1. Biomimetic selenocystine based dynamic combinatorial chemistry for thiol-disulfide exchange.
- Author
-
Canal-Martín, Andrea and Pérez-Fernández, Ruth
- Subjects
COMBINATORIAL chemistry ,DISULFIDES ,THIOLS ,GLUCOSE oxidase ,BIOCHEMISTRY ,MOLECULAR self-assembly ,EXCHANGE - Abstract
Dynamic combinatorial chemistry applied to biological environments requires the exchange chemistry of choice to take place under physiological conditions. Thiol-disulfide exchange, one of the most popular dynamic combinatorial chemistries, usually needs long equilibration times to reach the required equilibrium composition. Here we report selenocystine as a catalyst mimicking Nature's strategy to accelerate thiol-disulfide exchange at physiological pH and low temperatures. Selenocystine is able to accelerate slow thiol-disulfide systems and to promote the correct folding of an scrambled RNase A enzyme, thus broadening the practical range of pH conditions for oxidative folding. Additionally, dynamic combinatorial chemistry target-driven self-assembly processes are tested using spermine, spermidine and NADPH (casting) and glucose oxidase (molding). A non-competitive inhibitor is identified in the glucose oxidase directed dynamic combinatorial library. Thiol-disulfide exchange is an extensively used reversible reaction in dynamic combinatorial chemistry, but usually requires long time to reach equilibrium. Here, the authors employ selenocystine as a catalyst of thiol-disulfide exchange at low temperatures and basic pH, and show that it can promote disulfide bond formation during folding of a scrambled RNase A. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF