1. Promoting Students' Informal Inferential Reasoning through Arts-Integrated Data Literacy Education
- Author
-
Camillia Matuk, Ralph Vacca, Anna Amato, Megan Silander, Kayla DesPortes, Peter J. Woods, and Marian Tes
- Abstract
Purpose: Arts-integration is a promising approach to building students' abilities to create and critique arguments with data, also known as informal inferential reasoning (IIR). However, differences in disciplinary practices and routines, as well as school organization and culture, can pose barriers to subject integration. The purpose of this study is to describe synergies and tensions between data science and the arts, and how these can create or constrain opportunities for learners to engage in IIR. Design/methodology/approach: The authors co-designed and implemented four arts-integrated data literacy units with 10 teachers of arts and mathematics in middle school classrooms from four different schools in the USA. The data include student-generated artwork and their written rationales, and interviews with teachers and students. Through maximum variation sampling, the authors identified examples from the data to illustrate disciplinary synergies and tensions that appeared to support different IIR processes among students. Findings: Aspects of artistic representation, including embodiment, narrative and visual image; and aspects of the culture of arts, including an emphasis on personal experience, the acknowledgement of subjectivity and considerations for the audience's perspective, created synergies and tensions that both offered and hindered opportunities for IIR (i.e. going beyond data, using data as evidence and expressing uncertainty). Originality/value: This study answers calls for humanistic approaches to data literacy education. It contributes an interdisciplinary perspective on data literacy that complements other context-oriented perspectives on data science. This study also offers recommendations for how designers and educators can capitalize on synergies and mitigate tensions between domains to promote successful IIR in arts-integrated data literacy education.
- Published
- 2024
- Full Text
- View/download PDF