Heiskanen, Marja A., Nevalainen, Jaakko, Pahkala, Katja, Juonala, Markus, Hutri, Nina, Kähönen, Mika, Jokinen, Eero, Laitinen, Tomi P., Tossavainen, Päivi, Taittonen, Leena, Viikari, Jorma S. A., Raitakari, Olli T., and Rovio, Suvi P.
Background: Cognitive performance changes during the lifespan, but the information is gathered from studies on separate age cohorts. Computerized neurocognitive testing enables efficient and similar assessments for all ages. We investigated (i) the effect of age at different stages of life and (ii) intergenerational correlations across cognitive domains in the multigenerational Young Finns Study.Participants in three familiarly related generations (n = 6486, aged 7–92 years) performed the Cambridge Neuropsychological Test Automated Battery (CANTAB). Overall cognitive performance and domains representing learning and memory, working memory, information processing, and reaction time were extracted by common principal component analysis from the cognitive data with several age groups. Linear models were used to study the association of age, sex, and education with overall cognitive performance and in the cognitive domains. Age-adjusted intergenerational correlations were calculated.Learning and memory peaked earlier during the lifespan compared to working memory and information processing, and the rate of decline toward old age differed by domain. Weak intergenerational correlations existed between two consecutive generations but were nonsignificant between grandparents and grandchildren. There was no systematic sex-specific transmission in any cognitive domain.This study describes the natural course of cognitive performance across the lifespan and proves that cognitive performance changes differently across cognitive domains with weak intergenerational transmission.Methods: Cognitive performance changes during the lifespan, but the information is gathered from studies on separate age cohorts. Computerized neurocognitive testing enables efficient and similar assessments for all ages. We investigated (i) the effect of age at different stages of life and (ii) intergenerational correlations across cognitive domains in the multigenerational Young Finns Study.Participants in three familiarly related generations (n = 6486, aged 7–92 years) performed the Cambridge Neuropsychological Test Automated Battery (CANTAB). Overall cognitive performance and domains representing learning and memory, working memory, information processing, and reaction time were extracted by common principal component analysis from the cognitive data with several age groups. Linear models were used to study the association of age, sex, and education with overall cognitive performance and in the cognitive domains. Age-adjusted intergenerational correlations were calculated.Learning and memory peaked earlier during the lifespan compared to working memory and information processing, and the rate of decline toward old age differed by domain. Weak intergenerational correlations existed between two consecutive generations but were nonsignificant between grandparents and grandchildren. There was no systematic sex-specific transmission in any cognitive domain.This study describes the natural course of cognitive performance across the lifespan and proves that cognitive performance changes differently across cognitive domains with weak intergenerational transmission.Results: Cognitive performance changes during the lifespan, but the information is gathered from studies on separate age cohorts. Computerized neurocognitive testing enables efficient and similar assessments for all ages. We investigated (i) the effect of age at different stages of life and (ii) intergenerational correlations across cognitive domains in the multigenerational Young Finns Study.Participants in three familiarly related generations (n = 6486, aged 7–92 years) performed the Cambridge Neuropsychological Test Automated Battery (CANTAB). Overall cognitive performance and domains representing learning and memory, working memory, information processing, and reaction time were extracted by common principal component analysis from the cognitive data with several age groups. Linear models were used to study the association of age, sex, and education with overall cognitive performance and in the cognitive domains. Age-adjusted intergenerational correlations were calculated.Learning and memory peaked earlier during the lifespan compared to working memory and information processing, and the rate of decline toward old age differed by domain. Weak intergenerational correlations existed between two consecutive generations but were nonsignificant between grandparents and grandchildren. There was no systematic sex-specific transmission in any cognitive domain.This study describes the natural course of cognitive performance across the lifespan and proves that cognitive performance changes differently across cognitive domains with weak intergenerational transmission.Conclusion: Cognitive performance changes during the lifespan, but the information is gathered from studies on separate age cohorts. Computerized neurocognitive testing enables efficient and similar assessments for all ages. We investigated (i) the effect of age at different stages of life and (ii) intergenerational correlations across cognitive domains in the multigenerational Young Finns Study.Participants in three familiarly related generations (n = 6486, aged 7–92 years) performed the Cambridge Neuropsychological Test Automated Battery (CANTAB). Overall cognitive performance and domains representing learning and memory, working memory, information processing, and reaction time were extracted by common principal component analysis from the cognitive data with several age groups. Linear models were used to study the association of age, sex, and education with overall cognitive performance and in the cognitive domains. Age-adjusted intergenerational correlations were calculated.Learning and memory peaked earlier during the lifespan compared to working memory and information processing, and the rate of decline toward old age differed by domain. Weak intergenerational correlations existed between two consecutive generations but were nonsignificant between grandparents and grandchildren. There was no systematic sex-specific transmission in any cognitive domain.This study describes the natural course of cognitive performance across the lifespan and proves that cognitive performance changes differently across cognitive domains with weak intergenerational transmission. [ABSTRACT FROM AUTHOR]