1. Genome-Based Infection Tracking Reveals Dynamics of Clostridium difficile Transmission and Disease Recurrence.
- Author
-
Kumar N, Miyajima F, He M, Roberts P, Swale A, Ellison L, Pickard D, Smith G, Molyneux R, Dougan G, Parkhill J, Wren BW, Parry CM, Pirmohamed M, and Lawley TD
- Subjects
- Adult, Clostridioides difficile isolation & purification, Clostridium Infections microbiology, Clostridium Infections prevention & control, Cross Infection microbiology, Cross Infection prevention & control, Disease Outbreaks prevention & control, Female, Genotype, Hospitalization, Humans, Male, Middle Aged, Phylogeny, Polymorphism, Single Nucleotide, Recurrence, Ribotyping, Sequence Analysis, DNA, United Kingdom epidemiology, Young Adult, Clostridioides difficile genetics, Clostridium Infections epidemiology, Clostridium Infections transmission, Cross Infection transmission, Genome, Bacterial
- Abstract
Background: Accurate tracking of Clostridium difficile transmission within healthcare settings is key to its containment but is hindered by the lack of discriminatory power of standard genotyping methods. We describe a whole-genome phylogenetic-based method to track the transmission of individual clones in infected hospital patients from the epidemic C. difficile 027/ST1 lineage, and to distinguish between the 2 causes of recurrent disease, relapse (same strain), or reinfection (different strain)., Methods: We monitored patients with C. difficile infection in a UK hospital over a 2-year period. We performed whole-genome sequencing and phylogenetic analysis of 108 strains isolated from symptomatic patients. High-resolution phylogeny was integrated with in-hospital transfers and contact data to create an infection network linking individual patients and specific hospital wards., Results: Epidemic C. difficile 027/ST1 caused the majority of infections during our sampling period. Integration of whole-genome single nucleotide polymorphism (SNP) phylogenetic analysis, which accurately discriminated between 27 distinct SNP genotypes, with patient movement and contact data identified 32 plausible transmission events, including ward-based contamination (66%) or direct donor-recipient contact (34%). Highly contagious donors were identified who contributed to the persistence of clones within distinct hospital wards and the spread of clones between wards, especially in areas of intense turnover. Recurrent cases were identified between 4 and 26 weeks, highlighting the limitation of the standard <8-week cutoff used for patient diagnosis and management., Conclusions: Genome-based infection tracking to monitor the persistence and spread of C. difficile within healthcare facilities could inform infection control and patient management., (© The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America.)
- Published
- 2016
- Full Text
- View/download PDF