8 results on '"KANTÉ, MAMADOU MOUSTAPHA"'
Search Results
2. -Rank-Width of (Edge-Colored) Graphs
- Author
-
Kanté, Mamadou Moustapha, Rao, Michael, Hutchison, David, Series editor, Kanade, Takeo, Series editor, Kittler, Josef, Series editor, Kleinberg, Jon M., Series editor, Mattern, Friedemann, Series editor, Mitchell, John C., Series editor, Naor, Moni, Series editor, Nierstrasz, Oscar, Series editor, Pandu Rangan, C., Series editor, Steffen, Bernhard, Series editor, Sudan, Madhu, Series editor, Terzopoulos, Demetri, Series editor, Tygar, Doug, Series editor, Vardi, Moshe Y., Series editor, Weikum, Gerhard, Series editor, and Winkler, Franz, editor
- Published
- 2011
- Full Text
- View/download PDF
3. The Rank-Width of Edge-Coloured Graphs
- Author
-
Kanté, Mamadou Moustapha and Rao, Michael
- Published
- 2013
- Full Text
- View/download PDF
4. MORE APPLICATIONS OF THE d-NEIGHBOR EQUIVALENCE: ACYCLICITY AND CONNECTIVITY CONSTRAINTS.
- Author
-
BERGOUGNOUX, BENJAMIN and KANTÉ, MAMADOU MOUSTAPHA
- Subjects
- *
DOMINATING set , *NP-hard problems , *PROBLEM solving , *ALGORITHMS - Abstract
In this paper, we design a framework to obtain efficient algorithms for several problems with a global constraint (acyclicity or connectivity) such as Connected Dominating Set, Node Weighted Steiner Tree, Maximum Induced Tree, Longest Induced Path, and Feedback Vertex Set. We design a meta-algorithm that solves all these problems and whose running time is upper bounded by $2^{O(k)}\cdot n^{O(1)}$, $2^{O(k \log(k))}\cdot n^{O(1)}$, $2^{O(k^2)}\cdot n^{O(1)}$, and $n^{O(k)}$ where $k$ is respectively the clique-width, $\mathbb{Q}$-rank-width, rank-width, and maximum induced matching width of a given decomposition. Our approach simplifies and unifies the known algorithms for each of the parameters and its running time matches asymptotically also the running times of the best known algorithms for basic \sf NP-hard problems such as Vertex Cover and Dominating Set. Our framework is based on the $d$-neighbor equivalence defined in [B. Bui-Xuan, J. A. Telle, and M. Vatshelle, Theoret. Comput. Sci., (2013), pp. 66--76] and the rank-based approach introduced in [H. L. Bodlaender, M. Cygan, S. Kratsch, and J. Nederlof, Inform. and Comput., 243 (2015), pp. 86--111]. The results we obtain highlight the importance of the $d$-neighbor equivalence relation on the algorithmic applications of width measures. We also prove that our framework could be useful for ${\sf W}[1]$-hard problems parameterized by clique-width such as Max Cut and Maximum Minimal Cut. For these latter problems, we obtain $n^{O(k)}$, $n^{O(k)}$, and $n^{2^{O(k)}}$ time algorithms where $k$ is respectively the clique-width, the $\mathbb{Q}$-rank-width, and the rank-width of the input graph. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
5. Fast exact algorithms for some connectivity problems parametrized by clique-width
- Author
-
Bergougnoux, Benjamin, Kanté, Mamadou Moustapha, Kanté, Mamadou, Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), ANR-15-CE40-0009,GraphEn,Enumération dans les graphes et les hypergraphes: algorithmes et complexité(2015), Ecole Nationale Supérieure des Mines de St Etienne-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), and ANR: GraphEn,Enumeration on Graphs and Hypergraphs: Algorithms and Complexity
- Subjects
FOS: Computer and information sciences ,[INFO.INFO-CC]Computer Science [cs]/Computational Complexity [cs.CC] ,Discrete Mathematics (cs.DM) ,[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] ,feedback vertex set ,Computational Complexity (cs.CC) ,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] ,Computer Science - Computational Complexity ,single exponential algorithm ,Computer Science - Data Structures and Algorithms ,Data Structures and Algorithms (cs.DS) ,connected σ ρ-domination ,Computer Science - Discrete Mathematics ,clique-width - Abstract
Given a clique-width $k$-expression of a graph $G$, we provide $2^{O(k)}\cdot n$ time algorithms for connectivity constraints on locally checkable properties such as Node-Weighted Steiner Tree, Connected Dominating Set, or Connected Vertex Cover. We also propose a $2^{O(k)}\cdot n$ time algorithm for Feedback Vertex Set. The best running times for all the considered cases were either $2^{O(k\cdot \log(k))}\cdot n^{O(1)}$ or worse.
- Published
- 2017
6. Graph Structurings: Some Algorithmic Applications
- Author
-
Kanté, Mamadou Moustapha, Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB), Université Sciences et Technologies - Bordeaux I, Bruno Courcelle(courcell@labri.fr), and Kanté, Mamadou
- Subjects
rank-width ,configuration interdite ,labeling scheme ,excludedconfiguration ,[INFO.INFO-OH]Computer Science [cs]/Other [cs.OH] ,Graph decomposition ,largeur arborescente ,logique ,mineur ,largeur de clique ,[INFO.INFO-OH] Computer Science [cs]/Other [cs.OH] ,tree-width ,minor ,vertex-minor ,systèmed'étiquetage ,largeur de rang ,monadic second-order logic ,Décomposition de graphes ,clique-width ,first-order logic - Abstract
Every property definable in \emph{monadic second order logic} can be checked in polynomial-time on graph classes of bounded \emph{clique-width}. Clique-width is a graph parameter defined in an algebraical way, i.e., with operations ``concatenating graphs'' and that generalize concatenation of words. \emph{Rank-width}, defined in a combinatorial way, is equivalent to the clique-width of undirected graphs. We give an algebraic characterization of rank-width and we show that rank-width is linearly bounded in term of tree-width. We also propose a notion of rank-width of directed graphs and a \emph{vertex-minor} inclusion for directed graphs. We show that directed graphs of bounded rank-width are characterized by a finite list of finite directed graphs to exclude as vertex-minor.Many graph classes do not have bounded rank-width, e.g., planar graphs. We are interested in labeling schemes on these graph classes. A labeling scheme for a property $P$ in a graph $G$ consists in assigning a label, as short as possible, to each vertex of $G$ and such that, we can verify if $G$ satisfies $P$ by just looking at the labels. We show that every property definable in \emph{first order logic} admit labeling schemes with labels of logarithmic size on graph classes that have bounded \emph{local clique-width}. Bounded degree graph classes, minor closed classes of graphs that exclude an apex graph as a minor have bounded local clique-width.If $x$ and $y$ are two vertices and $X$ is a subset of the set of vertices and $Y$ is a subset of the set of edges, we let $Conn(x,y,X,F)$ be the graph property: $x$ and $y$ are connected by a path that avoids the vertices in $X$ and the edges in $F$. This property is not definable by a first order formula. We show that it admits a labeling scheme with labels of logarithmic size on planar graphs. We also show that $Conn(x,y,X,\emptyset)$ admits short labeling schemes with labels of logarithmic size on graph classes that are ``planar gluings'' of graphs of small clique-width and with limited overlaps., Tous les problèmes définissables en \emph{logique monadique du second ordre } peuvent être résolus en temps polynomial dans les classes de graphes qui ont une \emph{largeur de clique} bornée. La largeur de clique est un paramètre de graphe défini de manière algébrique, c'est-à-dire, à partir d'opérations de composition de graphes. La \emph{largeur de rang}, définie de manière combinatoire, est une notion équivalente à la largeur de clique des graphes non orientés. Nous donnons une caractérisation algébrique de la largeur de rang et nous montrons qu'elle est linéairement bornée par la largeur arborescente. Nous proposons également une notion de largeur de rang pour les graphes orientés et une relation de \emph{vertex-minor} pour les graphes orientés. Nous montrons que les graphes orientés qui ont une largeur de rang bornée sont caractérisés par une liste finie de graphes orientés à exclure.Beaucoup de classes de graphes n'ont pas une largeur de rang bornée, par exemple, les graphes planaires. Nous nous intéressons aux systèmes d'étiquetage dans ces classes de graphes. Un système d'étiquetage pour une propriété $P$ dans un graphe $G$, consiste à assigner une étiquette, aussi petite que possible, à chaque sommet de telle sorte que l'on puisse vérifier si $G$ satisfait $P$ en n'utilisant que les étiquettes des sommets. Nous montrons que si $P$ est une propriété définissable en \emph{logique du premier ordre} alors, certaines classes de graphes de \emph{largeur de clique localement bornée} admettent un système d'étiquetage pour $P$ avec des étiquettes de taille logarithmique. Parmi ces classes on peut citer les classes de graphes de degré borné, les graphes planaires et plus généralement les classes de graphes qui excluent un apex comme mineur et, les graphes d'intervalle unitaire.Si $x$ et $y$ sont deux sommets, $X$ un ensemble de sommets et $F$ un ensemble d'arêtes, nous notons $Conn(x,y,X,F)$ la propriété qui vérifie dans un graphe donné si $x$ et $y$ sont connectés par un chemin, qui ne passe par aucun sommet de $X$ ni aucune arête de $F$. Cette propriété n'est pas définissable en logique du premier ordre. Nous montrons qu'elle admet un système d'étiquetage avec des étiquettes de taille logarithmique dans les graphes planaires. Nous montrons enfin que $Conn(x,y,X,\emptyset)$ admet également un système d'étiquetage avec des étiquettes de taille logarithmique dans des classes de graphes qui sont définies comme des \emph{combinaisons} de graphes qui ont une petite largeur de clique et telle que le graphe d'intersection de ces derniers est planaire et est de degré borné.
- Published
- 2008
7. Graph operations characterizing rank-width
- Author
-
Courcelle, Bruno and Kanté, Mamadou Moustapha
- Subjects
- *
GRAPH theory , *TREE graphs , *DECOMPOSITION method , *MONADS (Mathematics) , *ALGORITHMS - Abstract
Abstract: Graph complexity measures such as tree-width, clique-width and rank-width are important because they yield Fixed Parameter Tractable algorithms. These algorithms are based on hierarchical decompositions of the considered graphs, and on boundedness conditions on the graph operations that, more or less explicitly, recombine the components of decompositions into larger graphs. Rank-width is defined in a combinatorial way, based on a tree, and not in terms of graph operations. We define operations on graphs that characterize rank-width and help for the construction of Fixed Parameter Tractable algorithms, especially for problems specified in monadic second-order logic. [Copyright &y& Elsevier]
- Published
- 2009
- Full Text
- View/download PDF
8. Vertex-minor reductions can simulate edge contractions
- Author
-
Kanté, Mamadou Moustapha
- Subjects
- *
COMPLEMENTATION (Genetics) , *ALLELES , *GENETICS , *BIOLOGY - Abstract
Abstract: We prove that local complementation and vertex deletion, operations from which vertex-minors are defined, can simulate edge contractions. As an application, we prove that the rank-width of a graph is linearly bounded in term of its tree-width. [Copyright &y& Elsevier]
- Published
- 2007
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.