1. Contrasting carbon cycle responses of semiarid abandoned farmland to simulated warmer-drier and warmer-wetter climates.
- Author
-
Zhong Z, Wang X, Yang C, Wang Y, Yang G, Xu Y, and Li C
- Subjects
- China, Ecosystem, Farms, Carbon analysis, Agriculture methods, Environmental Monitoring, Carbon Cycle, Climate Change, Soil chemistry
- Abstract
Rewilding abandoned farmlands provides a nature-based climate solution via carbon (C) offsetting; however, the C-cycle-climate feedback in such restored ecosystems is poorly understood. Therefore, we conducted a 2-year field experiment in Loess Plateau, China, to determine the impacts of warming (∼1.4 °C) and altered precipitation (±25 %, ±50 %, and ambient), alone or in concert on soil C pools and associated C fluxes. Experimental warming significantly enhanced soil respiration without affecting the ecosystem net C uptake and soil C storage; these variables tended to increase along the manipulated precipitation gradient. Their interactions increased ecosystem net C uptake (synergism) but decreased soil respiration and soil C accumulation (antagonism) compared with a single warming or altered precipitation. Additionally, most variables related to the C cycle tended to be more responsive to increased precipitation, but the ecosystem net C uptake responded intensely to warming and decreased precipitation. Overall, ecosystem net C uptake and soil C storage increased by 94.4 % and 8.2 %, respectively, under the warmer-wetter scenario; however, phosphorus deficiency restricted soil C accumulation under these climatic conditions. By contrast, ecosystem net C uptake and soil C storage decreased by 56.6 % and 13.6 %, respectively, when exposed to the warmer-drier climate, intensifying its tendency toward a C source. Therefore, the C sink function of semiarid abandoned farmland was unsustainable. Our findings emphasize the need for management of post-abandonment regeneration to sustain ecosystem C sequestration in the context of climate change, aiding policymakers in the development of C-neutral routes in abandoned regions., Competing Interests: Declaration of competing interest The authors declare no competing interests., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF