1. Trans-ferulic acid ameliorates cisplatin-induced testicular damage via suppression of TLR4, P38-MAPK, and ERK1/2 signaling pathways.
- Author
-
Hassanein EHM, Abdel-Wahab BA, Ali FEM, Abd El-Ghafar OAM, Kozman MR, and Sharkawi SMZ
- Subjects
- Animals, Apoptosis, Caco-2 Cells, Coumaric Acids, Humans, MAP Kinase Signaling System, Male, NF-kappa B metabolism, Oxidative Stress, Rats, Toll-Like Receptor 4 metabolism, p38 Mitogen-Activated Protein Kinases metabolism, Cisplatin toxicity, Testis metabolism
- Abstract
Testicular damage has been described as a common side effect of cisplatin (CDDP), which limits its clinical uses. Since oxidative injury and inflammatory response are the most pathological impact, estimation of natural antioxidant and anti-inflammatory agents like trans-ferulic acid (TFA) could protect against CDDP-induced testicular damage. In the current investigation, rats were assigned into four groups: normal, TFA (50 mg/kg/day, P.O), CDDP (10 mg/kg) as single intraperitoneal (I.P) injection at the end of the 5th day, and TFA+CDDP where TFA was administered 5 days before CDDP injection and 5 days after. Interestingly, TFA significantly restored testosterone levels and abrogated oxidative stress injury. Additionally, TFA effectively suppressed inflammatory cytokines. It also counteracted the inflammation via downregulation of TLR4 and IRF3, P38-MAPK, NF-κB-p65, JAK1, STAT3, ERK1, and ERK2. Besides, TFA can modulate AKT and p-AKT protein expressions. In parallel, TFA mitigated the histopathological aberration of the testis and prevented spermatogenesis disruption. On the other hand, TFA augmented the in vitro CDDP cytotoxicity on Caco-2 and MCF-7 cells. Interestingly, TFA enhanced the cytotoxic effect of CDDP via apoptosis induction in both the early and late stages of apoptosis. Collectively, TFA exhibited a potential protective effect against CDDP-induced testicular injury by inhibiting oxidative stress as well as TLR4/IRF3/INF-γ, P38-MAPK/NF-κB-p65/TNF-α, and JAK1/STAT-3/ERK1/2 inflammatory signaling pathways with enhancing its in vitro cytotoxic activity., (© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2021
- Full Text
- View/download PDF