1. Notional Spread of Cholera in Haiti Following a Natural Disaster: Considerations for Military and Disaster Relief Personnel.
- Author
-
Hadeed SJ, Broadway KM, Schwartz-Watjen KT, Tigabu B, Woodards AJ, Swiatecka AL, Owens AN, and Wu A
- Subjects
- Humans, Haiti epidemiology, Natural Disasters, Relief Work statistics & numerical data, Relief Work organization & administration, Cholera epidemiology, Cholera prevention & control, Cholera transmission, Military Personnel statistics & numerical data, Disease Outbreaks prevention & control, Disease Outbreaks statistics & numerical data
- Abstract
Introduction: Cholera remains a significant public health threat for many countries, and the severity largely varies by the population and local conditions that drive disease spread, especially in endemic areas prone to natural disasters and flooding. Epidemiological models can provide useful information to military planners for understanding disease spread within populations and the effectiveness of response options for preventing the transmission among deployed and stationed personnel. This study demonstrates the use of epidemiological modeling to understand the dynamics of cholera transmission to inform emergency planning and military preparedness in areas with highly communicable diseases., Materials and Methods: Areas with higher probability for a potential cholera outbreak in Haiti followed by a natural disaster were identified. The hotspots were then used to seed an extended compartmental model, EpiGrid, to simulate notional spread scenarios of cholera originating in three distinct areas in Haiti. Disease parameters were derived from the 2010 cholera outbreak in Haiti, and disease spread was simulated over a 12-week period under uncontrolled and controlled spread., Results: For each model location, scenarios of mitigated (intervention with 30% transmission reduction via international aid) and unmitigated (without intervention) are simulated. The results depict the geographical spread and estimate the cumulative cholera infection for each notional scenario over the course of 3 months. Disease transmission differs considerably across origin site with an outbreak originating in the department of Nippes spanning the largest geographic area and resulting in the largest number of cumulative cases after 12 weeks under unmitigated (79,518 cases) and mitigated (35,667 cases) spread scenarios., Conclusions: We modeled the notional re-emergence and spread of cholera following the August 2021 earthquake in Haiti while in the midst of the global COVID-19 pandemic. This information can help guide military and emergency response decision-making during an infectious disease outbreak and considerations for protecting military personnel in the midst of a humanitarian response. Military planners should consider the use of epidemiological models to assess the health risk posed to deployed and stationed personnel in high-risk areas., (Published by Oxford University Press on behalf of the Association of Military Surgeons of the United States 2022. This work is written by (a) US Government employee(s) and is in the public domain in the US.)
- Published
- 2023
- Full Text
- View/download PDF