1. Folic Acid-Conjugated Chitosan-Coated Solid Lipid Nanoparticles: Precision Targeting of Artemisia vulgaris Essential Oils for Anticancer Therapy.
- Author
-
Aghabagherzadeh M, Karimi E, and Zareian M
- Subjects
- Humans, Folic Acid chemistry, Chitosan pharmacology, Chitosan chemistry, Artemisia, Nanoparticles chemistry, Liposomes
- Abstract
In this study, we developed Solid Lipid Nanoparticles (SLN-NPs) loaded with Artemisia vulgaris essential oil and coated with folic acid-chitosan (AVEO-SCF-NPs) to enhance drug delivery in biotechnology and pharmaceutical sectors. AVEO-SCF-NPs were synthesized using homogenization and ultra-sonication methods and comprehensively characterized. These nanoparticles exhibited a particle size of 253.67 nm, Polydispersity Index (PDI) of 0.26, zeta potential (ζ-p) of +39.96 mV, encapsulation efficiency (%EE) of 99.0 %, and folic acid binding efficiency (% FB) of 46.25 %. They effectively inhibited MCF-7, HT-29, and PC-3 cancer cells with IC
50 values of 48.87 μg/mL, 88.48 μg/mL, and 121.34 μg/mL, respectively, and demonstrated antibacterial properties against Gram-positive strains. AVEO-SCF-NPs also exhibited scavenging effects on ABTS (IC50 : 203.83 μg/mL) and DPPH (IC50: 680.86 μg/mL) free radicals and inhibited angiogenesis, as confirmed through CAM and qPCR assays. Furthermore, these nanoparticles induced apoptosis, evidenced by up-regulation of caspase 3 and 9, down-regulation of TNF-α genes, and an increase in SubG1 phase cells. The high loading capacity of SCF-NPs for AVEO, coupled with their multifaceted biological properties, highlights AVEO-SCF-NPs as promising candidates for cancer therapy in the biotechnology and pharmaceutical industries., (© 2024 Wiley-VHCA AG, Zurich, Switzerland.)- Published
- 2024
- Full Text
- View/download PDF