1. A self-training deep neural network for early prediction of cognitive deficits in very preterm infants using brain functional connectome data
- Author
-
Redha, Ali, Hailong, Li, Jonathan R, Dillman, Mekibib, Altaye, Hui, Wang, Nehal A, Parikh, and Lili, He
- Subjects
Cognition ,Pediatrics, Perinatology and Child Health ,Connectome ,Infant, Newborn ,Brain ,Humans ,Infant ,Radiology, Nuclear Medicine and imaging ,Infant, Premature, Diseases ,Neural Networks, Computer ,Child ,Infant, Premature ,Article - Abstract
BACKGROUND: Deep learning has been employed using brain functional connectome data for evaluating the risk of cognitive deficits in very preterm infants. Although promising, training these deep learning models typically requires a large amount of labeled data, and labeled medical data are often very difficult and expensive to obtain. OBJECTIVE: This study aimed to develop a self-training deep neural network (DNN) model for early prediction of cognitive deficits at 2 years of corrected age in very preterm infants (gestational age ≤32 weeks) using both labeled and unlabeled brain functional connectome data. MATERIALS AND METHODS: We collected brain functional connectome data from 343 very preterm infants at a mean (standard deviation) postmenstrual age of 42.7 (2.5) weeks, among whom 103 children had a cognitive assessment at 2 years (i.e. labeled data), and the remaining 240 children had not received 2-year assessments at the time this study was conducted (i.e. unlabeled data). To develop a self-training DNN model, we built an initial student model using labeled brain functional connectome data. Then, we applied the trained model as a teacher model to generate pseudo-labels for unlabeled brain functional connectome data. Next, we combined labeled and pseudo-labeled data to train a new student model. We iterated this procedure to obtain the best student model for the early prediction task in very preterm infants. RESULTS: In our cross-validation experiments, the proposed self-training DNN model achieved an accuracy of 71.0%, a specificity of 71.5%, a sensitivity of 70.4% and an area under the curve of 0.75, significantly outperforming transfer learning models through pre-training approaches. CONCLUSION: We report the first self-training prognostic study in very preterm infants, efficiently utilizing a small amount of labeled data with a larger share of unlabeled data to aid the model training. The proposed technique is expected to facilitate deep learning with insufficient training data.
- Published
- 2022
- Full Text
- View/download PDF