1. Copper(I) Alkynyl Clusters with Crystallization-Induced Emission Enhancement
- Author
-
Xing Lu, Chen Liu, Yang-Lin Shen, Jun-Jie Fang, Yunpeng Xie, and Zheng Liu
- Subjects
Infrared spectroscopy ,chemistry.chemical_element ,Crystal structure ,Phosphate ,Copper ,law.invention ,Amorphous solid ,Inorganic Chemistry ,chemistry.chemical_compound ,Crystallography ,chemistry ,law ,Cluster (physics) ,Physical and Theoretical Chemistry ,Crystallization ,Luminescence - Abstract
Four copper(I) alkynyl complexes incorporating phosphate ligands, namely, [Cu16(tBuC≡C)12(PhOPO3)2]n (1; PhOPO3 = phenyl phosphate), [Cu16(tBuC≡C)12(1-NaphOPO3)2]n (2; 1-NaphOPO3 = 1-naphthyl phosphate), [VO4@Cu25(tBuC≡C)19(1-NaphOPO3)](PF6)0.5(F)0.5 (3), and [PO4@Cu25(tBuC≡C)19(1-NaphOPO3)](PF6)0.5(F)0.5 (4), were solvothermally synthesized and well-characterized by IR spectroscopy, powder X-ray diffraction, and single-crystal X-ray diffraction. Single-crystal X-ray analysis revealed that the Cu16 cluster-based coordination chain polymers 1 and 2 are formed by assembly during crystallization, while 3 and 4 contain high-nuclearity copper(I) composite clusters enclosing orthovanadate and phosphate template ions, respectively, that are supported by ROPO32- ligands. Complexes 1-4 exhibit crystallization-induced emission enhancement. Their crystalline state shows strong luminescence, in striking contrast to the weak emission of the amorphous state and solution phase. A detailed investigation of the crystal structure suggests that well-arranged C-H···π and π···π interactions between the ligands are the major factors for this enhanced emission. Clusters 3 and 4 also exhibit photocurrent responses upon visible-light illumination.
- Published
- 2021