1. A direction-aware and ultrafast self-healing dual network hydrogel for a flexible electronic skin strain sensor
- Author
-
Ting Lu, Min Xu, Guodong Pan, Lu Han, Hailong Huang, Likun Pan, Lijia Wan, Xiaoyang Xuan, and Wenwu Peng
- Subjects
Polyethylenimine ,Materials science ,Renewable Energy, Sustainability and the Environment ,technology, industry, and agriculture ,Supramolecular chemistry ,Electronic skin ,Nanotechnology ,macromolecular substances ,02 engineering and technology ,General Chemistry ,Strain sensor ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Polyvinyl alcohol ,Artificial skin ,0104 chemical sciences ,chemistry.chemical_compound ,chemistry ,Self-healing ,General Materials Science ,0210 nano-technology ,Ultrashort pulse - Abstract
As an important part of artificial intelligence, electronic skin has received more and more attention recently. However, two serious issues, slow self-healing and lack of direction recognition, have limited the burgeoning of electronic skin largely. Herein, for the first time we report a dual network flexible hydrogel, which was synthesized via cross-linking polyvinyl alcohol (PVA) and polyethylenimine (PEI) with 4-formylbenzoboric acid (Bn) to form a polymer network and then incorporating MXene into the polymer network. Due to the synergy of multiple reversible dynamic covalent bonds and supramolecular interactions, the PVA/Bn/PEI/MXene (PBPM) hydrogel exhibits direction-aware and ultrafast self-healing abilities (self-healing time ∼0.06 s) as well as rapid response performance (signal response time ∼0.12 s). Furthermore, an electronic skin strain sensor assembled by using the PBPM hydrogel can not only efficiently detect the movements in different parts of the prosthetic person body but also specifically identify the directions of the movements including head-down/up and wrist-down/up. The flexible PBPM hydrogel in this work has shown great potential in the applications of artificial skin, soft robots, health monitoring and human-machine exchange interfaces.
- Published
- 2020
- Full Text
- View/download PDF