1. Design of microbial consortia for the fermentation of pea-protein-enriched emulsions
- Author
-
Anne Saint-Eve, Françoise Irlinger, Eric Dugat-Bony, Isabelle Souchon, Salma Ben-Harb, Maud Panouillé, Pascal Bonnarme, Génie et Microbiologie des Procédés Alimentaires (GMPA), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Université Paris Saclay (COmUE), Carnot Qualiment Institute, Tunisian Ministry of Higher Education and Scientific Research, and INRA MIGALE bioinformatics platform
- Subjects
[SDV]Life Sciences [q-bio] ,Colony Count, Microbial ,Lactose ,chemistry.chemical_compound ,Cheese ,RNA, Ribosomal, 16S ,[SDV.IDA]Life Sciences [q-bio]/Food engineering ,Brevibacterium casei ,Food science ,2. Zero hunger ,0303 health sciences ,biology ,Lacticaseibacillus rhamnosus ,Chemistry ,food and beverages ,General Medicine ,Middle Aged ,Legume ,Lactic acid ,Lactococcus lactis ,Milk ,Emulsions ,Microbial assembly ,Lactic acid fermentation ,Adult ,DNA, Bacterial ,Lactobacillus casei ,Microbial Consortia ,Firmicutes ,Microbiology ,Young Adult ,03 medical and health sciences ,Lactobacillus rhamnosus ,Animals ,Humans ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,Aroma profile ,030304 developmental biology ,Volatile Organic Compounds ,Bacteria ,030306 microbiology ,Pea protein ,Peas ,Fungi ,Hafnia alvei ,biology.organism_classification ,Fermentation ,Odorants ,Food Microbiology ,Lactobacillus plantarum ,Pea Proteins ,Food Science - Abstract
International audience; In order to encourage Western populations to increase their consumption of vegetables, we suggest turning legumes into novel, healthy foods by applying an old, previously widespread method of food preservation: fermentation. In the present study, a total of 55 strains from different microbial species (isolated from cheese or plants) were investigated for their ability to: (i) grow on a emulsion containing 100% pea proteins and no carbohydrates or on a 50:50 pea:milk protein emulsion containing lactose, (ii) increase aroma quality and reduce sensory off-flavors; and (iii) compete against endogenous micro organisms. The presence of carbohydrates in the mixed pea:milk emulsion markedly influenced the fermentation by strongly reducing the pH through lactic fermentation, whereas the absence of carbohydrates in the pea emulsion promoted alkaline or neutral fermentation. Lactic acid bacteria assigned to Lactobacillus plantarum, Lactobacillus rhamnosus, Lactococcus lactis and Lactobacillus casei species grew well in both the pea and pea:milk emulsions. Most of the fungal strains tested (particularly those belonging to the Mucor and Geotrichum genera) were also able to grow on both emulsions. Although most Actinobacteria and Proteobacteria did not compete with endogenous microbiota (Bacillus), some species such as Hafnia alvei, Acinetobacter johnsonii and Glutamicibacter arilaitensis grew strongly and appeared to restrict the development of the endogenous microbiota when the pea emulsion was inoculated with a combination of three to nine strains. In the mixed emulsions, lactic fermentation inhibited Actinobacteria and Proteobacteria (e.g. Brevibacterium casei, Corynebacterium casei, Staphylococcus lentos) to the greatest extent but also inhibited Bacillus (e.g. Bacillus subtilis and Bacillus licheniformis). Overall, this procedure enabled us to select two microbial consortia able to colonize pea-based products and positively influence the release of volatile compounds by generating a roasted/grilled aroma for the 100% pea emulsion, and a fruity, lactic aroma for the 50:50 pea:milk emulsion. Moreover, the fermentation in the pea-based emulsions reduced the level of hexanal, which otherwise leads to an undesired green pea aroma. Our present results show how the assembly of multiple microbial cultures can help to develop an innovative food product.
- Published
- 2019
- Full Text
- View/download PDF