1. Epoxy resin mold and PDMS microfluidic devices through photopolymer flexographic printing plate
- Author
-
Karla Vizuete, Gustavo Rosero, Carol M. Olmos, Luis Cumbal, Ana Peñaherrera, Maximiliano S. Pérez, Alexis Debut, Betiana Lerner, Igor de Sá Carneiro, Carlos R. Arroyo, Camilo Perez, and Andrea V. Vaca
- Subjects
Fabrication ,Materials science ,Scanning electron microscope ,PHOTOPOLYMER FLEXOGRAPHIC ,Microfluidics ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,medicine.disease_cause ,01 natural sciences ,chemistry.chemical_compound ,Mold ,Flexography ,Materials Chemistry ,medicine ,PDMS MICRODEVICE ,Electrical and Electronic Engineering ,Instrumentation ,MICRODROPLETS GENERATION ,MICROFLUIDICS ,Polydimethylsiloxane ,Metals and Alloys ,Epoxy ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Photopolymer ,purl.org/becyt/ford/2 [https] ,chemistry ,visual_art ,visual_art.visual_art_medium ,EPOXY RESIN ,purl.org/becyt/ford/2.5 [https] ,0210 nano-technology - Abstract
Photopolymer flexographic printing plate is a new photopolymeric material used for microdevices fabrication. This work demonstrates that a photopolymer flexographic master mold can be used for the fabrication of PDMS (polydimethylsiloxane) microdevices by a multi-step manufacturing process. The methodology entails three main fabrication steps: (1) a photopolymer flexographic printing plate mold (FMold) is generated by UV exposure through a transparent film, (2) an epoxy resin mold (ERmold) is fabricated by transferring the features of the photopolymer mold and (3) a PDMS microdevice is manufactured from the epoxy resin mold. The characterization of the manufactured PDMS microdevices was performed using scanning electron microscopy (SEM) and profilometry. Results showed high accuracy in the replication of the profiles. To show the feasibility of the fabrication process a microdevice for microdroplet generation was designed, manufactured and tested. Hence, the manufacturing process described in this work provides an easy, robust, and low-cost strategy that facilitates the scaling-up of microfluidic devices without requiring any sophisticated equipment. Fil: Olmos Carreno, Carol Maritza. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Vaca Mora, Andrea Vanessa. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Rosero, Gustavo. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina Fil: Peñaherrera Pazmiño, Ana Belén. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina Fil: Pérez Sosa, Camilo José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina Fil: de Sá Carneiro, Igor. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina Fil: Vizuete, Karla. Universidad de Las Fuerzas Armadas Espe; Ecuador Fil: Arroyo, Carlos R.. Universidad de Las Fuerzas Armadas; Ecuador Fil: Debut, Alexis. Universidad de Las Fuerzas Armadas; Ecuador Fil: Perez, Maximiliano Sebastian. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina Fil: Cumbal, Luis. Universidad de Las Fuerzas Armadas; Ecuador Fil: Lerner, Betiana. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina
- Published
- 2019