1. Development of validated UHPLC–PDA with ESI–MS-MS method for concurrent estimation of magnoflorine, berbamine, columbamine, jatrorrhizine, palmatine and berberine in Berberis aristata
- Author
-
Vijay P. Bhatt, Aboli Girme, Lal Hingorani, Ishita A. Basera, Ganesh Saste, Sandeep Pawar, and Mamta B. Shah
- Subjects
Jatrorrhizine ,Chromatography ,biology ,Electrospray ionization ,Berberis aristata ,Palmatine ,General Chemistry ,Berbamine ,biology.organism_classification ,chemistry.chemical_compound ,Berberine ,chemistry ,Uhplc pda ,Magnoflorine - Abstract
A validated UHPLC-PDA with an ESI-MS/MS method has been developed for simultaneous estimation of six bioactive alkaloids (magnoflorine, berbamine, columbamine, jatrorrhizine, palmatine and berberine) in the different extracts of the roots of Berberis aristata DC (Family:Berberdiaceae). It is an important medicinal herb native to Northern Himalaya and commonly known as ‘daruharidra’, ‘daruhaldi’, ‘Indian barberry’ or ‘tree turmeric’. An insight into the research literature uncovered reports on isoquinoline alkaloids like magnoflorine, berbamine, columbamine, jatrorrhizine, palmatine, and berberine as major bioactives in B. aristata roots, possessing different pharmacological and therapeutic effects. In the present study, these aforementioned alkaloids were separated on Phenomenex Luna®, 5 µm-C8 analytical column. The HPLC-MS analysis was performed at a flow rate of 0.90 mL min−1. Each alkaloid that is resolved was characterized by precursor ions and fragment ions with electrospray ionization (ESI) source in both positive and negative ionization using scan mode. The limit of detections (LODs) were 0.087, 0.727, 0.035, 0.124, 0.782 and 0.794 μg mL−1 for magnoflorine, berbamine, columbamine, jatrorrhizine, palmatine and berberine, respectively. The proposed UHPLC-PDA method was fully validated according to international (ICH) guidelines and was found to be selective, sensitive and highly accurate for the concomitant estimation of the aforementioned symbolic bio-markers of B. aristata roots.
- Published
- 2022
- Full Text
- View/download PDF