1. Design and synthesis of novel orexin 2 receptor agonists based on naphthalene skeleton
- Author
-
Yukiko Ishikawa, Yoko Irukayama-Tomobe, Tsubasa Hino, Naoshi Yamamoto, Hiroshi Nagase, Yasuyuki Nagumo, Masashi Yanagisawa, Noriki Kutsumura, Tsuyoshi Saitoh, and Ryuji Tanimura
- Subjects
Agonist ,Stereochemistry ,medicine.drug_class ,Clinical Biochemistry ,Pharmaceutical Science ,Naphthalenes ,Ring (chemistry) ,Biochemistry ,chemistry.chemical_compound ,Structure-Activity Relationship ,Orexin Receptors ,Amide ,Drug Discovery ,medicine ,Humans ,Molecular Biology ,Naphthalene ,Aniline Compounds ,Dose-Response Relationship, Drug ,Molecular Structure ,Organic Chemistry ,Orexin receptor ,chemistry ,Docking (molecular) ,Drug Design ,Benzamides ,Molecular Medicine ,Pharmacophore ,Methyl group - Abstract
A novel series of naphthalene derivatives were designed and synthesized based on the strategy focusing on the restriction of the flexible bond rotation of OX2R selective agonist YNT-185 (1) and their agonist activities against orexin receptors were evaluated. The 1,7-naphthalene derivatives showed superior agonist activity than 2,7-naphthalene derivatives, suggesting that the bent form of 1 would be favorable for the agonist activity. The conformational analysis of 1,7-naphthalene derivatives indicated that the twisting of the amide unit out from the naphthalene plane is important for the enhancement of activity. The introduction of a methyl group on the 2-position of 1,7-naphthalene ring effectively increased the activity, which led to the discovery of the potent OX2R agonist 28c (EC50 = 9.21 nM for OX2R, 148 nM for OX1R). The structure-activity relationship results were well supported by a comparison of the docking simulation results of the most potent derivative 28c with an active state of agonist-bound OX2R cryo-EM SPA structure. These results suggested important information for understanding the active conformation and orientation of pharmacophores in the orexin receptor agonists, which is expected as a chemotherapeutic agent for the treatment of narcolepsy.
- Published
- 2021