1. Chrysosplenol-C Increases Contraction by Augmentation of Sarcoplasmic Reticulum Ca2+ Loading and Release via Protein Kinase C in Rat Ventricular Myocytes
- Author
-
Tran Nguyet Trinh, Yin Hua Zhang, Joon-Chul Kim, Celine J Ohk, Anh Thi Van Vu, Cuong Manh Nguyen, Anh Thi Ngoc Hoang, Jun Wang, and Sun-Hee Woo
- Subjects
Pharmacology ,Contractility ,Contraction (grammar) ,Chemistry ,Endoplasmic reticulum ,Ca2+/calmodulin-dependent protein kinase ,Biophysics ,Molecular Medicine ,chemistry.chemical_element ,Myocyte ,Patch clamp ,Calcium ,Protein kinase C - Abstract
Naturally found chrysosplenol-C (49,5,6-trihydroxy-3,39,7-trimethoxyflavone) increases the contractility of cardiac myocytes independent of b-adrenergic signaling. We investigated the cellular mechanism for chrysosplenol-C-induced positive inotropy. Global and local Ca2+ signals, L-type Ca2+ current (ICa), and contraction were measured from adult rat ventricular myocytes using two-dimensional confocal Ca2+ imaging, the whole-cell patch clamp technique, and video-edge detection, respectively. Application of chrysosplenol-C reversibly increased Ca2+ transient magnitude with a maximal increase of ~55% within 2-3-min-exposures (EC50 =~21 mM). This chemical did not alter ICa and slightly increased diastolic Ca2+ level. The frequency and size of resting Ca2+ sparks were increased by chrysosplenol-C. Chrysosplenol-C significantly increased sarcoplasmic reticulum (SR) Ca2+ content but not fractional release. Pretreatment of protein kinase C (PKC) inhibitor, but not Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor, abolished the stimulatory effects of chrysosplenol-C on Ca2+ transients and Ca2+ sparks. Chrysosplenol-C-induced positive inotropy was removed by the inhibition of PKC, but not CaMKII or phospholipase C. Western blotting assessment revealed that PKC-δ protein level in the membrane fractions significantly increase within 2 min after chrysosplenol-C exposure with a delayed (5 min) increase in PKC-α levels in insoluble membrane. These results suggest that chrysosplenol-C enhances contractility via PKC (most likely PKC-δ)-dependent enhancement of SR Ca2+ releases in ventricular myocytes. Significance Statement We show that chrysosplenol-C, a natural flavone showing a positive inotropic effect, increases sarcoplasmic reticulum (SR) Ca2+ releases on depolarizations and Ca2+ sparks with an increase of SR Ca2+ loading, but not L-type Ca2+ current, in ventricular myocytes. Chrysosplenol-C-induced enhancement in contraction is eliminated by protein kinase C (PKC) inhibition, and it is associated with redistributions of PKC to the membrane. These indicate that chrysosplenol-C enhances contraction via PKC-dependent augmentations of SR Ca2+ release and Ca2+ loading during action potentials.
- Published
- 2021
- Full Text
- View/download PDF