1. Trends in ground-state entropies for transition metal based hydrogen atom transfer reactions.
- Author
-
Mader EA, Manner VW, Markle TF, Wu A, Franz JA, and Mayer JM
- Subjects
- Calorimetry, Entropy, Hot Temperature, Kinetics, Metals chemistry, Molecular Structure, Solvents, Transition Elements chemistry, Chemistry methods, Chemistry, Physical methods, Hydrogen chemistry
- Abstract
Reported herein are thermochemical studies of hydrogen atom transfer (HAT) reactions involving transition metal H-atom donors M(II)LH and oxyl radicals. [Fe(II)(H(2)bip)(3)](2+), [Fe(II)(H(2)bim)(3)](2+), [Co(II)(H(2)bim)(3)](2+), and Ru(II)(acac)(2)(py-imH) [H(2)bip = 2,2'-bi-1,4,5,6-tetrahydropyrimidine, H(2)bim = 2,2'-bi-imidazoline, acac = 2,4-pentandionato, py-imH = 2-(2'-pyridyl)imidazole)] each react with TEMPO (2,2,6,6-tetramethyl-1-piperidinoxyl) or (t)Bu(3)PhO(*) (2,4,6-tri-tert-butylphenoxyl) to give the deprotonated, oxidized metal complex M(III)L and TEMPOH or (t)Bu(3)PhOH. Solution equilibrium measurements for the reaction of [Co(II)(H(2)bim)(3)](2+) with TEMPO show a large, negative ground-state entropy for hydrogen atom transfer, -41 +/- 2 cal mol(-1) K(-1). This is even more negative than the DeltaS(o)(HAT) = -30 +/- 2 cal mol(-1) K(-1) for the two iron complexes and the DeltaS(o)(HAT) for Ru(II)(acac)(2)(py-imH) + TEMPO, 4.9 +/- 1.1 cal mol(-1) K(-1), as reported earlier. Calorimetric measurements quantitatively confirm the enthalpy of reaction for [Fe(II)(H(2)bip)(3)](2+) + TEMPO, thus also confirming DeltaS(o)(HAT). Calorimetry on TEMPOH + (t)Bu(3)PhO(*) gives DeltaH(o)(HAT) = -11.2 +/- 0.5 kcal mol(-1) which matches the enthalpy predicted from the difference in literature solution BDEs. A brief evaluation of the literature thermochemistry of TEMPOH and (t)Bu(3)PhOH supports the common assumption that DeltaS(o)(HAT) approximately 0 for HAT reactions of organic and small gas-phase molecules. However, this assumption does not hold for transition metal based HAT reactions. The trend in magnitude of |DeltaS(o)(HAT)| for reactions with TEMPO, Ru(II)(acac)(2)(py-imH) << [Fe(II)(H(2)bip)(3)](2+) = [Fe(II)(H(2)bim)(3)](2+) < [Co(II)(H(2)bim)(3)](2+), is surprisingly well predicted by the trends for electron transfer half-reaction entropies, DeltaS(o)(ET), in aprotic solvents. This is because both DeltaS(o)(ET) and DeltaS(o)(HAT) have substantial contributions from vibrational entropy, which varies significantly with the metal center involved. The close connection between DeltaS(o)(HAT) and DeltaS(o)(ET) provides an important link between these two fields and provides a starting point from which to predict which HAT systems will have important ground-state entropy effects.
- Published
- 2009
- Full Text
- View/download PDF