1. High-Speed Imaging of Second-Harmonic Generation in MoS2 Bilayer under Femtosecond Laser Ablation
- Author
-
Young Chul Kim, Hoseong Yoo, Van Tu Nguyen, Soonil Lee, Ji-Yong Park, and Yeong Hwan Ahn
- Subjects
second-harmonic generation ,transition-metal dichalcogenides ,twisted bilayer ,laser ablation ,Chemistry ,QD1-999 - Abstract
We report an in situ characterization of transition-metal dichalcogenide (TMD) monolayers and twisted bilayers using a high-speed second-harmonic generation (SHG) imaging technique. High-frequency laser modulation and galvano scanning in the SHG imaging enabled a rapid identification of the crystallinity in the TMD, including the orientation and homogeneity with a speed of 1 frame/s. For a twisted bilayer MoS2, we studied the SHG peak intensity and angles as a function of the twist angle under a strong interlayer coupling. In addition, rapid SHG imaging can be used to visualize laser-induced ablation of monolayer and bilayer MoS2 in situ under illumination by a strong femtosecond laser. Importantly, we observed a characteristic threshold behavior; the ablation process occurred for a very short time duration once the preheating condition was reached. We investigated the laser thinning of the bilayer MoS2 with different twist angles. When the twist angle was 0°, the SHG decreased by approximately one-fourth of the initial intensity when one layer was removed. Conversely, when the twist angle was approximately 60° (the SHG intensity was suppressed), the SHG increased abruptly close to that of the nearby monolayer when one layer was removed. Precise layer-by-layer control was possible because of the unique threshold behavior of the laser-induced ablation.
- Published
- 2021
- Full Text
- View/download PDF