1. Induction of defense in cereals by 4-fluorophenoxyacetic acid suppresses insect pest populations and increases crop yields in the field
- Author
-
Jun Wu, Zhuoxian Yu, Angharad M. R. Gatehouse, Shang Zhicai, Jin-Peng Meng, Wanwan Wang, Nuo Jin, Xiaochang Mo, Yonggen Lou, Lingfei Hu, Xia Chen, Pengyong Zhou, and Matthias Erb
- Subjects
Crops, Agricultural ,0106 biological sciences ,0301 basic medicine ,media_common.quotation_subject ,Flavonoid ,Insect ,Acetates ,580 Plants (Botany) ,01 natural sciences ,Hemiptera ,Insect pest ,03 medical and health sciences ,Planthopper ,Animals ,Plant Immunity ,Herbivory ,Triticum ,media_common ,Flavonoids ,chemistry.chemical_classification ,Herbivore ,Multidisciplinary ,biology ,Crop yield ,fungi ,food and beverages ,Hordeum ,Oryza ,Feeding Behavior ,Hydrogen Peroxide ,Biological Sciences ,biology.organism_classification ,Plant Leaves ,030104 developmental biology ,Peroxidases ,Agronomy ,chemistry ,Biological Assay ,Pest Control ,Sogatella furcifera ,Phloem ,010606 plant biology & botany - Abstract
Synthetic chemical elicitors, so called plant strengtheners, can protect plants from pests and pathogens. Most plant strengtheners act by modifying defense signaling pathways, and little is known about other mechanisms by which they may increase plant resistance. Moreover, whether plant strengtheners that enhance insect resistance actually enhance crop yields is often unclear. Here, we uncover how a mechanism by which 4-fluorophenoxyacetic acid (4-FPA) protects cereals from piercing-sucking insects and thereby increases rice yield in the field. Four-FPA does not stimulate hormonal signaling, but modulates the production of peroxidases, H 2 O 2 , and flavonoids and directly triggers the formation of flavonoid polymers. The increased deposition of phenolic polymers in rice parenchyma cells of 4-FPA-treated plants is associated with a decreased capacity of the white-backed planthopper (WBPH) Sogatella furcifera to reach the plant phloem. We demonstrate that application of 4-PFA in the field enhances rice yield by reducing the abundance of, and damage caused by, insect pests. We demonstrate that 4-FPA also increases the resistance of other major cereals such as wheat and barley to piercing-sucking insect pests. This study unravels a mode of action by which plant strengtheners can suppress herbivores and increase crop yield. We postulate that this represents a conserved defense mechanism of plants against piercing-sucking insect pests, at least in cereals.
- Published
- 2020
- Full Text
- View/download PDF