1. Comparative analysis of drug-salt-polymer interactions by experiment and molecular simulation improves biopharmaceutical performance
- Author
-
Sumit Mukesh, Goutam Mukherjee, Ridhima Singh, Nathan Steenbuck, Carolina Demidova, Prachi Joshi, Abhay T. Sangamwar, and Rebecca C. Wade
- Subjects
Chemistry ,QD1-999 - Abstract
Abstract The propensity of poorly water-soluble drugs to aggregate at supersaturation impedes their bioavailability. Supersaturated amorphous drug-salt-polymer systems provide an emergent approach to this problem. However, the effects of polymers on drug-drug interactions in aqueous phase are largely unexplored and it is unclear how to choose an optimal salt-polymer combination for a particular drug. Here, we describe a comparative experimental and computational characterization of amorphous solid dispersions containing the drug celecoxib, and a polymer, polyvinylpyrrolidone vinyl acetate (PVP-VA) or hydroxypropyl methylcellulose acetate succinate, with or without Na+/K+ salts. Classical models for drug-polymer interactions fail to identify the best drug-salt-polymer combination. In contrast, more stable drug-polymer interaction energies computed from molecular dynamics simulations correlate with prolonged stability of supersaturated amorphous drug-salt-polymer systems, along with better dissolution and pharmacokinetic profiles. The celecoxib-salt-PVP-VA formulations exhibit excellent biopharmaceutical performance, offering the prospect of a low-dosage regimen for this widely used anti-inflammatory, thereby increasing cost-effectiveness, and reducing side-effects.
- Published
- 2023
- Full Text
- View/download PDF