24 results on '"P. Marenco"'
Search Results
2. The 2019 Raikoke volcanic eruption – Part 2: Particle-phase dispersion and concurrent wildfire smoke emissions
- Author
-
M. J. Osborne, J. de Leeuw, C. Witham, A. Schmidt, F. Beckett, N. Kristiansen, J. Buxmann, C. Saint, E. J. Welton, J. Fochesatto, A. R. Gomes, U. Bundke, A. Petzold, F. Marenco, and J. Haywood
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Between 27 June and 14 July 2019 aerosol layers were observed by the United Kingdom (UK) Raman lidar network in the upper troposphere and lower stratosphere. The arrival of these aerosol layers in late June caused some concern within the London Volcanic Ash Advisory Centre (VAAC) as according to dispersion simulations the volcanic plume from the 21 June 2019 eruption of Raikoke was not expected over the UK until early July. Using dispersion simulations from the Met Office Numerical Atmospheric-dispersion Modelling Environment (NAME), and supporting evidence from satellite and in situ aircraft observations, we show that the early arrival of the stratospheric layers was not due to aerosols from the explosive eruption of the Raikoke volcano but due to biomass burning smoke aerosols associated with intense forest fires in Alberta, Canada, that occurred 4 d prior to the Raikoke eruption. We use the observations and model simulations to describe the dispersion of both the volcanic and forest fire aerosol clouds and estimate that the initial Raikoke ash aerosol cloud contained around 15 Tg of volcanic ash and that the forest fires produced around 0.2 Tg of biomass burning aerosol. The operational monitoring of volcanic aerosol clouds is a vital capability in terms of aviation safety and the synergy of NAME dispersion simulations, and lidar data with depolarising capabilities allowed scientists at the Met Office to interpret the various aerosol layers over the UK and attribute the material to their sources. The use of NAME allowed the identification of the observed stratospheric layers that reached the UK on 27 June as biomass burning aerosol, characterised by a particle linear depolarisation ratio of 9 %, whereas with the lidar alone the latter could have been identified as the early arrival of a volcanic ash–sulfate mixed aerosol cloud. In the case under study, given the low concentration estimates, the exact identification of the aerosol layers would have made little substantive difference to the decision-making process within the London VAAC. However, our work shows how the use of dispersion modelling together with multiple observation sources enabled us to create a more complete description of atmospheric aerosol loading.
- Published
- 2022
- Full Text
- View/download PDF
3. Models transport Saharan dust too low in the atmosphere: a comparison of the MetUM and CAMS forecasts with observations
- Author
-
D. O'Sullivan, F. Marenco, C. L. Ryder, Y. Pradhan, Z. Kipling, B. Johnson, A. Benedetti, M. Brooks, M. McGill, J. Yorks, and P. Selmer
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
We investigate the dust forecasts from two operational global atmospheric models in comparison with in situ and remote sensing measurements obtained during the AERosol properties – Dust (AER-D) field campaign. Airborne elastic backscatter lidar measurements were performed on board the Facility for Airborne Atmospheric Measurements during August 2015 over the eastern Atlantic, and they permitted us to characterise the dust vertical distribution in detail, offering insights on transport from the Sahara. They were complemented with airborne in situ measurements of dust size distribution and optical properties, as well as datasets from the Cloud–Aerosol Transport System (CATS) spaceborne lidar and the Moderate Resolution Imaging Spectroradiometer (MODIS). We compare the airborne and spaceborne datasets to operational predictions obtained from the Met Office Unified Model (MetUM) and the Copernicus Atmosphere Monitoring Service (CAMS). The dust aerosol optical depth predictions from the models are generally in agreement with the observations but display a low bias. However, the predicted vertical distribution places the dust lower in the atmosphere than highlighted in our observations. This is particularly noticeable for the MetUM, which does not transport coarse dust high enough in the atmosphere or far enough away from the source. We also found that both model forecasts underpredict coarse-mode dust and at times overpredict fine-mode dust, but as they are fine-tuned to represent the observed optical depth, the fine mode is set to compensate for the underestimation of the coarse mode. As aerosol–cloud interactions are dependent on particle numbers rather than on the optical properties, this behaviour is likely to affect their correct representation. This leads us to propose an augmentation of the set of aerosol observations available on a global scale for constraining models, with a better focus on the vertical distribution and on the particle size distribution. Mineral dust is a major component of the climate system; therefore, it is important to work towards improving how models reproduce its properties and transport mechanisms.
- Published
- 2020
- Full Text
- View/download PDF
4. Eye Health Screening in Migrant Population: Primary Care Experience in Lazio (Italy) from the PROTECT Project
- Author
-
Alice Bruscolini, Giacomo Visioli, Marco Marenco, Veronica Cherubini, Anna Maria Comberiati, Gaspare Palaia, Massimo Ralli, Livia Ottolenghi, Alessandro Lambiase, and Antonella Polimeni
- Subjects
impaired ocular vision ,ocular diseases ,screening ,migrants ,vulnerability ,cooperation ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Italy is a natural corridor for entry into Europe, receiving thousands of refugees and migrants needing socio-economic and health assistance yearly. Impaired vision due to eye disease is estimated to affect at least 2.2 billion people worldwide, especially in this underprivileged population. To overcome this deep disparity, new intervention strategies, such as the PROTECT project, were planned with the aim of assessing, in the context of the head–neck area, the eye health in vulnerable applicants and holders of international protection. A total of 3023 migrants were involved in the project. Demographic factors and eye history were collected using a questionnaire. Using portable diagnostic instruments, an eye screening including monocular visual acuity, intraocular pressure, anterior segment, and ocular fundus was performed. The mean age was 31.6 ± 13.1 years and more than 50% underwent the first eye evaluation. Vision impairment was claimed by 16.6% of subjects and the most frequent diseases diagnosed were: refractive errors (11%), strabismus (6%), red eye (6%), cataract (5.3%), and ocular hypertension (1%). Retinal alterations were observed in 5% of migrants. The PROTECT project allows us to increase the accessibility of head–neck disease prevention care. Moreover, our results confirm the utility of an eye screening assessment for early identification of the most relevant and preventable ocular diseases, especially in disadvantaged populations.
- Published
- 2023
- Full Text
- View/download PDF
5. The vertical distribution of biomass burning pollution over tropical South America from aircraft in situ measurements during SAMBBA
- Author
-
E. Darbyshire, W. T. Morgan, J. D. Allan, D. Liu, M. J. Flynn, J. R. Dorsey, S. J. O'Shea, D. Lowe, K. Szpek, F. Marenco, B. T. Johnson, S. Bauguitte, J. M. Haywood, J. F. Brito, P. Artaxo, K. M. Longo, and H. Coe
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
We examine processes driving the vertical distribution of biomass burning pollution following an integrated analysis of over 200 pollutant and meteorological profiles measured in situ during the South AMerican Biomass Burning Analysis (SAMBBA) field experiment. This study will aid future work examining the impact of biomass burning on weather, climate and air quality. During the dry season there were significant contrasts in the composition and vertical distribution of haze between western and eastern regions of tropical South America. Owing to an active or residual convective mixing layer, the aerosol abundance was similar from the surface to ∼1.5 km in the west and ∼3 km in the east. Black carbon mass loadings were double as much in the east (1.7 µg m−3) than the west (0.85 µg m−3), but aerosol scattering coefficients at 550 nm were similar (∼120 Mm−1), as too were CO near-surface concentrations (310–340 ppb). We attribute these contrasts to the more flaming combustion of Cerrado fires in the east and more smouldering combustion of deforestation and pasture fires in the west. Horizontal wind shear was important in inhibiting mixed layer growth and plume rise, in addition to advecting pollutants from the Cerrado regions into the remote tropical forest of central Amazonia. Thin layers above the mixing layer indicate the roles of both plume injection and shallow moist convection in delivering pollution to the lower free troposphere. However, detrainment of large smoke plumes into the upper free troposphere was very infrequently observed. Our results reiterate that thermodynamics control the pollutant vertical distribution and thus point to the need for correct model representation so that the spatial distribution and vertical structure of biomass burning smoke is captured. We observed an increase of aerosol abundance relative to CO with altitude both in the background haze and plume enhancement ratios. It is unlikely associated with thermodynamic partitioning, aerosol deposition or local non-fire sources. We speculate it may be linked to long-range transport from West Africa or fire combustion efficiency coupled to plume injection height. Further enquiry is required to explain the phenomenon and explore impacts on regional climate and air quality.
- Published
- 2019
- Full Text
- View/download PDF
6. Saharan dust and biomass burning aerosols during ex-hurricane Ophelia: observations from the new UK lidar and sun-photometer network
- Author
-
M. Osborne, F. F. Malavelle, M. Adam, J. Buxmann, J. Sugier, F. Marenco, and J. Haywood
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
On 15–16 October 2017, ex-hurricane Ophelia passed to the west of the British Isles, bringing dust from the Sahara and smoke from Portuguese forest fires that was observable to the naked eye and reported in the UK's national press. We report here detailed observations of this event using the UK operational lidar and sun-photometer network, established for the early detection of aviation hazards, including volcanic ash. We also use ECMWF ERA5 wind field data and MODIS imagery to examine the aerosol transport. The observations, taken continuously over a period of 30 h, show a complex picture, dominated by several different aerosol layers at different times and clearly correlated with the passage of different air masses associated with the intense cyclonic system. A similar evolution was observed at several sites, with a time delay between them explained by their different location with respect to the storm and associated meteorological features. The event commenced with a shallow dust layer at 1–2 km in altitude and culminated in a deep and complex structure that lasted ∼12 h at each site over the UK, correlated with the storm's warm sector. For most of the time, the aerosol detected was dominated by mineral dust mixtures, as highlighted by depolarisation measurements, but an intense biomass burning aerosol (BBA) layer was observed towards the end of the event, lasting around 3 h at each site. The aerosol optical depth at 355 nm (AOD355) during the whole event ranged from 0.2 to 2.9, with the larger AOD correlated to the intense BBA layer. Such a large AOD is unprecedented in the UK according to AERONET records for the last 20 years. The Raman lidars permitted the measurement of the aerosol extinction coefficient at 355 nm, the particle linear depolarisation ratio (PLDR), and the lidar ratio (LR) and made the separation of the dust (depolarising) aerosol from other aerosol types possible. A specific extinction has also been computed to provide an estimate of the atmospheric concentration of both aerosol types separately, which peaked at 420±200 µg m−3 for the dust and 558±232 µg m−3 for the biomass burning aerosols. Back trajectories computed using the Numerical Atmospheric-dispersion Modelling Environment (NAME) were used to identify the sources and strengthen the conclusions drawn from the observations. The UK network represents a significant expansion of the observing capability in northern Europe, with instruments evenly distributed across Great Britain, from Camborne in Cornwall to Lerwick in the Shetland Islands, and this study represents the first attempt to demonstrate its capability and validate the methods in use. Its ultimate purpose will be the detection and quantification of volcanic plumes, but the present study clearly demonstrates the advanced capabilities of the network.
- Published
- 2019
- Full Text
- View/download PDF
7. Potential Use of Low-Cost Agri-Food Waste as Biosorbents for the Removal of Cd(II), Co(II), Ni(II) and Pb(II) from Aqueous Solutions
- Author
-
Lorena Sánchez-Ponce, Margarita Díaz-de-Alba, María José Casanueva-Marenco, Jesús Gestoso-Rojas, Marta Ortega-Iguña, María Dolores Galindo-Riaño, and María Dolores Granado-Castro
- Subjects
biomass ,revaluation of agri-food waste ,heavy metals ,biosorption ,water remediation ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
We evaluated the potential use of agri-food waste for the removal of heavy metal ions from aqueous solutions and its application in different processes (e.g., water remediation, in the production of biomass enriched in nutritionally significant elements, etc.). Biomasses from grape seed, grape pomace, loquat seed, Calabrese broccoli stem, empty pods of carob and broad bean pods, unripe bitter orange peel, kumquat, orange pulp and Canary Island banana pulp were prepared. The percentages and biosorption capacities were evaluated and compared with those refe-renced using Valencia orange peel (Citrus sinensis Valencia late). These studies allow for easily providing added value to different agri-food wastes. The results show that the proposed biomasses were able to retain the studied metal ions and obtained different percentages, being in some cases above 90%. The highest values were obtained using broad bean pod (Pb(II) (91.5%), Cd(II) (61.7%), Co(II) (40.7%) and Ni(II) (39.7%)). Similar values were observed using grape seed, broccoli stem, carob pod and unripe bitter orange peel. Carob pod for biosorption of Cd(II) is also of great interest. These studies suggest that the agri-food residues evaluated can be applied to prepare effective biosorbents of divalent metal ions from aqueous solutions.
- Published
- 2022
- Full Text
- View/download PDF
8. Unexpected vertical structure of the Saharan Air Layer and giant dust particles during AER-D
- Author
-
F. Marenco, C. Ryder, V. Estellés, D. O'Sullivan, J. Brooke, L. Orgill, G. Lloyd, and M. Gallagher
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
The Saharan Air Layer (SAL) in the summertime eastern Atlantic is typically well mixed and 3–4 km deep, overlying the marine boundary layer (MBL). In this paper, we show experimental evidence that at times a very different structure can be observed. During the AERosol properties – Dust (AER-D) airborne campaign in August 2015, the typical structure described above was observed most of the time, and was associated with a moderate dust content yielding an aerosol optical depth (AOD) of 0.3–0.4 at 355 nm. In an intense event, however, an unprecedented vertical structure was observed close to the eastern boundary of the basin, displaying an uneven vertical distribution and a very large AOD (1.5–2), with most of the dust in a much lower level than usual (0.3–2 km). Estimated dust concentrations and column loadings for all flights during the campaign spanned 300–5500 and 0.8–7.5 g m−2, respectively. The shortwave direct radiative impact of the intense dust event has been evaluated to be as large as -260±30 and -120±15 W m−2 at the surface and top of atmosphere (TOA), respectively. We also report the correlation of this event with anomalous lightning activity in the Canary Islands. In all cases, our measurements detected a broad distribution of aerosol sizes, ranging from ∼0.1 to ∼80 µm (diameter), thus highlighting the presence of giant particles. Giant dust particles were also found in the MBL. We note that most aerosol models may miss the giant particles due to the fact that they use size bins up to 10–25 µm. The unusual vertical structure and the giant particles may have implications for dust transport over the Atlantic during intense events and may affect the estimate of dust deposited to the ocean. We believe that future campaigns could focus more on events with high aerosol load and that instrumentation capable of detecting giant particles will be key to dust observations in this part of the world.
- Published
- 2018
- Full Text
- View/download PDF
9. Coarse-mode mineral dust size distributions, composition and optical properties from AER-D aircraft measurements over the tropical eastern Atlantic
- Author
-
C. L. Ryder, F. Marenco, J. K. Brooke, V. Estelles, R. Cotton, P. Formenti, J. B. McQuaid, H. C. Price, D. Liu, P. Ausset, P. D. Rosenberg, J. W. Taylor, T. Choularton, K. Bower, H. Coe, M. Gallagher, J. Crosier, G. Lloyd, E. J. Highwood, and B. J. Murray
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Mineral dust is an important component of the climate system, affecting the radiation balance, cloud properties, biogeochemical cycles, regional circulation and precipitation, as well as having negative effects on aviation, solar energy generation and human health. Dust size and composition has an impact on all these processes. However, changes in dust size distribution and composition during transport, particularly for coarse particles, are poorly understood and poorly represented in climate models. Here we present new in situ airborne observations of dust in the Saharan Air Layer (SAL) and the marine boundary layer (MBL) at the beginning of its transatlantic transport pathway, from the AERosol Properties – Dust (AER-D) fieldwork in August 2015, within the peak season of North African dust export. This study focuses on coarse-mode dust properties, including size distribution, mass loading, shape, composition, refractive indices and optical properties. Size distributions from 0.1 to 100 µm diameter (d) are presented, fully incorporating the coarse and giant modes of dust. Within the MBL, mean effective diameter (deff) and volume median diameter (VMD) were 4.6 and 6.0 µm respectively, giant particles with a mode at 20–30 µm were observed, and composition was dominated by quartz and alumino-silicates at d > 1 µm. Within the SAL, particles larger than 20 µm diameter were always present up to 5 km altitude, in concentrations over 10−5 cm−3, constituting up to 40 % of total dust mass. Mean deff and VMD were 4.0 and 5.5 µm respectively. Larger particles were detected in the SAL than can be explained by sedimentation theory alone. Coarse-mode composition was dominated by quartz and alumino-silicates; the accumulation mode showed a strong contribution from sulfate-rich and sea salt particles. In the SAL, measured single scattering albedos (SSAs) at 550 nm representing d d 2 g−1 (mean 0.32 m2 g−1). Variability in SSA was mainly controlled by variability in dust composition (principally iron) rather than by variations in the size distribution, in contrast with previous observations over the Sahara where size is the dominant influence. It is important that models are able to capture the variability and evolution of both dust composition and size distribution with transport in order to accurately represent the impacts of dust on climate. These results provide a new SAL dust dataset, fully representing coarse and giant particles, to aid model validation and development.
- Published
- 2018
- Full Text
- View/download PDF
10. Aircraft and ground measurements of dust aerosols over the west African coast in summer 2015 during ICE-D and AER-D
- Author
-
D. Liu, J. W. Taylor, J. Crosier, N. Marsden, K. N. Bower, G. Lloyd, C. L. Ryder, J. K. Brooke, R. Cotton, F. Marenco, A. Blyth, Z. Cui, V. Estelles, M. Gallagher, H. Coe, and T. W. Choularton
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
During the summertime, dust from the Sahara can be efficiently transported westwards within the Saharan air layer (SAL). This can lead to high aerosol loadings being observed above a relatively clean marine boundary layer (MBL) in the tropical Atlantic Ocean. These dust layers can impart significant radiative effects through strong visible and IR light absorption and scattering, and can also have indirect impacts by altering cloud properties. The processing of the dust aerosol can result in changes in both direct and indirect radiative effects, leading to significant uncertainty in climate prediction in this region. During August 2015, measurements of aerosol and cloud properties were conducted off the coast of west Africa as part of the Ice in Cloud Experiment – Dust (ICE-D) and AERosol properties – Dust (AER-D) campaigns. Observations were obtained over a 4-week period using the UK Facility for Atmospheric Airborne Measurements (FAAM) BAe 146 aircraft based on Santiago Island, Cabo Verde. Ground-based observations were collected from Praia (14°57′ N, 23°29′ W; 100 m a.s.l.), also located on Santiago Island. The dust in the SAL was mostly sampled in situ at altitudes of 2–4 km, and the potential dust age was estimated by backward trajectory analysis. The particle mass concentration (at diameter d = 0.1–20 µm) decreased with transport time. Mean effective diameter (Deff) for supermicron SAL dust (d = 1–20 µm) was found to be 5–6 µm regardless of dust age, whereas submicron Deff (d = 0.1–1 µm) showed a decreasing trend with longer transport. For the first time, an airborne laser-induced incandescence instrument (the single particle soot photometer – SP2) was deployed to measure the hematite content of dust. For the Sahel-influenced dust in the SAL, the observed hematite mass fraction of dust (FHm) was found to be anti-correlated with the single scattering albedo (SSA, λ = 550 nm, for particles d FHm increased from 2.5 to 4.5 %, SSA decreased from 0.97 to 0.93 and the derived imaginary part (k) of the refractive index at 550 nm increased from 0.0015 to 0.0035. However, the optical properties of Sahara-influenced plumes (not influenced by the Sahel) were independent of dust age and hematite content with SSA ∼ 0.95 and k ∼ 0.0028. This indicates that the absorbing component of dust may be source dependent, or that gravitational settling of larger particles may lead to a higher fraction of more absorbing clay–iron aggregates at smaller sizes. Mie calculation using the measured size distribution and size-resolved refractive indices of the absorbing components (black carbon and hematite) reproduces the measured SSA to within ±0.02 for SAL dust by assuming a goethite ∕ hematite mass ratio of 2. Overall, hematite and goethite constituted 40–80 % of the absorption for particles d
- Published
- 2018
- Full Text
- View/download PDF
11. Clouds over the summertime Sahara: an evaluation of Met Office retrievals from Meteosat Second Generation using airborne remote sensing
- Author
-
J. C. Kealy, F. Marenco, J. H. Marsham, L. Garcia-Carreras, P. N. Francis, M. C. Cooke, and J. Hocking
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Novel methods of cloud detection are applied to airborne remote sensing observations from the unique Fennec aircraft dataset, to evaluate the Met Office-derived products on cloud properties over the Sahara based on the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on-board the Meteosat Second Generation (MSG) satellite. Two cloud mask configurations are considered, as well as the retrievals of cloud-top height (CTH), and these products are compared to airborne cloud remote sensing products acquired during the Fennec campaign in June 2011 and June 2012. Most detected clouds (67 % of the total) have a horizontal extent that is smaller than a SEVIRI pixel (3 km × 3 km). We show that, when partially cloud-contaminated pixels are included, a match between the SEVIRI and aircraft datasets is found in 80 ± 8 % of the pixels. Moreover, under clear skies the datasets are shown to agree for more than 90 % of the pixels. The mean cloud field, derived from the satellite cloud mask acquired during the Fennec flights, shows that areas of high surface albedo and orography are preferred sites for Saharan cloud cover, consistent with published theories. Cloud-top height retrievals however show large discrepancies over the region, which are ascribed to limiting factors such as the cloud horizontal extent, the derived effective cloud amount, and the absorption by mineral dust. The results of the CTH analysis presented here may also have further-reaching implications for the techniques employed by other satellite applications facilities across the world.
- Published
- 2017
- Full Text
- View/download PDF
12. Two global data sets of daily fire emission injection heights since 2003
- Author
-
S. Rémy, A. Veira, R. Paugam, M. Sofiev, J. W. Kaiser, F. Marenco, S. P. Burton, A. Benedetti, R. J. Engelen, R. Ferrare, and J. W. Hair
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
The Global Fire Assimilation System (GFAS) assimilates fire radiative power (FRP) observations from satellite-based sensors to produce daily estimates of biomass burning emissions. It has been extended to include information about injection heights derived from fire observations and meteorological information from the operational weather forecasts of ECMWF. Injection heights are provided by two distinct methods: the Integrated Monitoring and Modelling System for wildland fires (IS4FIRES) parameterisation and the one-dimensional plume rise model (PRM). A global database of daily biomass burning emissions and injection heights at 0.1° resolution has been produced for 2003–2015 and is continuously extended in near-real time with the operational GFAS service of the Copernicus Atmospheric Monitoring Service (CAMS). In this study, the two injection height data sets were compared with the new MPHP2 (MISR Plume Height Project 2) satellite-based plume height retrievals. The IS4FIRES parameterisation showed a better overall agreement than the observations, while the PRM was better at capturing the variability of injection heights. The performance of both parameterisations is also dependent on the type of vegetation. Furthermore, the use of biomass burning emission heights from GFAS in atmospheric composition forecasts was assessed in two case studies: the South AMerican Biomass Burning Analysis (SAMBBA) campaign which took place in September 2012 in Brazil, and a series of large fire events in the western USA in August 2013. For these case studies, forecasts of biomass burning aerosol species by the Composition Integrated Forecasting System (C-IFS) of CAMS were found to better reproduce the observed vertical distribution when using PRM injection heights from GFAS compared to aerosols emissions being prescribed at the surface. The globally available GFAS injection heights introduced and evaluated in this study provide a comprehensive data set for future fire and atmospheric composition modelling studies.
- Published
- 2017
- Full Text
- View/download PDF
13. Chemical and Physical Characterisation of Human Serum Albumin Nanocolloids: Kinetics, Strength and Specificity of Bonds with 99mTc and 68Ga
- Author
-
Manuela Marenco, Letizia Canziani, Gianluca De Matteis, Giorgio Cavenaghi, Carlo Aprile, and Lorenzo Lodola
- Subjects
radiopharmaceutical ,PET (positron emission tomography) ,SPECT (single-photon emission computed tomography) ,nanocolloids ,human serum albumin ,99mTc ,Chemistry ,QD1-999 - Abstract
Nanoparticles of Human Serum Albumin (NC) labelled with 99mTc are widely used in Nuclear Medicine and represent the gold-standard for the intraoperative detection of the sentinel lymph node in many kinds of cancer, mainly breast cancer and melanoma. A significant amount of radionuclides can be incorporated into the HSA particle, due to the multiple binding sites, and HSA-based nanocolloid catabolism is a fast and easy process that results in innocuous degradation products. NCs labelled with different isotopes represent an interesting radiopharmaceutical for extending diagnostic accuracy and surgical outcome, but the knowledge of the chemical bond between NCs and isotopes has not been fully elucidated, including information on its strength and specificity. The aim of this study is to investigate and compare the physicochemical characteristics of the bond between NCs and 99mTc and 68Ga isotopes. Commercial kits of HSA-based nanocolloid particles (NanoAlbumon®) were used. For this purpose, we have primarily studied the kinetic orders of NC radiolabelling. Langmuir isotherms and pH effect on radiolabelling were tested and the stability of the radiometal complex was verified through competition reactions carried out in presence of different ligands. The future goal of our research is the development of inexpensive and instant kits, easily labelled with a wide spectrum of diagnostic and therapeutic isotopes, thus facilitating the availability of versatile and multipurpose radiopharmaceuticals.
- Published
- 2021
- Full Text
- View/download PDF
14. Evaluation of biomass burning aerosols in the HadGEM3 climate model with observations from the SAMBBA field campaign
- Author
-
B. T. Johnson, J. M. Haywood, J. M. Langridge, E. Darbyshire, W. T. Morgan, K. Szpek, J. K. Brooke, F. Marenco, H. Coe, P. Artaxo, K. M. Longo, J. P. Mulcahy, G. W. Mann, M. Dalvi, and N. Bellouin
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
We present observations of biomass burning aerosol from the South American Biomass Burning Analysis (SAMBBA) and other measurement campaigns, and use these to evaluate the representation of biomass burning aerosol properties and processes in a state-of-the-art climate model. The evaluation includes detailed comparisons with aircraft and ground data, along with remote sensing observations from MODIS and AERONET. We demonstrate several improvements to aerosol properties following the implementation of the Global Model for Aerosol Processes (GLOMAP-mode) modal aerosol scheme in the HadGEM3 climate model. This predicts the particle size distribution, composition, and optical properties, giving increased accuracy in the representation of aerosol properties and physical–chemical processes over the Coupled Large-scale Aerosol Scheme for Simulations in Climate Models (CLASSIC) bulk aerosol scheme previously used in HadGEM2. Although both models give similar regional distributions of carbonaceous aerosol mass and aerosol optical depth (AOD), GLOMAP-mode is better able to capture the observed size distribution, single scattering albedo, and Ångström exponent across different tropical biomass burning source regions. Both aerosol schemes overestimate the uptake of water compared to recent observations, CLASSIC more so than GLOMAP-mode, leading to a likely overestimation of aerosol scattering, AOD, and single scattering albedo at high relative humidity. Observed aerosol vertical distributions were well captured when biomass burning aerosol emissions were injected uniformly from the surface to 3 km. Finally, good agreement between observed and modelled AOD was gained only after scaling up GFED3 emissions by a factor of 1.6 for CLASSIC and 2.0 for GLOMAP-mode. We attribute this difference in scaling factor mainly to different assumptions for the water uptake and growth of aerosol mass during ageing via oxidation and condensation of organics. We also note that similar agreement with observed AOD could have been achieved with lower scaling factors if the ratio of organic carbon to primary organic matter was increased in the models toward the upper range of observed values. Improved knowledge from measurements is required to reduce uncertainties in emission ratios for black carbon and organic carbon, and the ratio of organic carbon to primary organic matter for primary emissions from biomass burning.
- Published
- 2016
- Full Text
- View/download PDF
15. Observed microphysical changes in Arctic mixed-phase clouds when transitioning from sea ice to open ocean
- Author
-
G. Young, H. M. Jones, T. W. Choularton, J. Crosier, K. N. Bower, M. W. Gallagher, R. S. Davies, I. A. Renfrew, A. D. Elvidge, E. Darbyshire, F. Marenco, P. R. A. Brown, H. M. A. Ricketts, P. J. Connolly, G. Lloyd, P. I. Williams, J. D. Allan, J. W. Taylor, D. Liu, and M. J. Flynn
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
In situ airborne observations of cloud microphysics, aerosol properties, and thermodynamic structure over the transition from sea ice to ocean are presented from the Aerosol-Cloud Coupling And Climate Interactions in the Arctic (ACCACIA) campaign. A case study from 23 March 2013 provides a unique view of the cloud microphysical changes over this transition under cold-air outbreak conditions. Cloud base lifted and cloud depth increased over the transition from sea ice to ocean. Mean droplet number concentrations, Ndrop, also increased from 110 ± 36 cm−3 over the sea ice to 145 ± 54 cm−3 over the marginal ice zone (MIZ). Downstream over the ocean, Ndrop decreased to 63 ± 30 cm−3. This reduction was attributed to enhanced collision-coalescence of droplets within the deep ocean cloud layer. The liquid water content increased almost four fold over the transition and this, in conjunction with the deeper cloud layer, allowed rimed snowflakes to develop and precipitate out of cloud base downstream over the ocean. The ice properties of the cloud remained approximately constant over the transition. Observed ice crystal number concentrations averaged approximately 0.5–1.5 L−1, suggesting only primary ice nucleation was active; however, there was evidence of crystal fragmentation at cloud base over the ocean. Little variation in aerosol particle number concentrations was observed between the different surface conditions; however, some variability with altitude was observed, with notably greater concentrations measured at higher altitudes ( > 800 m) over the sea ice. Near-surface boundary layer temperatures increased by 13 °C from sea ice to ocean, with corresponding increases in surface heat fluxes and turbulent kinetic energy. These significant thermodynamic changes were concluded to be the primary driver of the microphysical evolution of the cloud. This study represents the first investigation, using in situ airborne observations, of cloud microphysical changes with changing sea ice cover and addresses the question of how the microphysics of Arctic stratiform clouds may change as the region warms and sea ice extent reduces.
- Published
- 2016
- Full Text
- View/download PDF
16. Validation of ash optical depth and layer height retrieved from passive satellite sensors using EARLINET and airborne lidar data: the case of the Eyjafjallajökull eruption
- Author
-
D. Balis, M.-E. Koukouli, N. Siomos, S. Dimopoulos, L. Mona, G. Pappalardo, F. Marenco, L. Clarisse, L. J. Ventress, E. Carboni, R. G. Grainger, P. Wang, G. Tilstra, R. van der A, N. Theys, and C. Zehner
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
The vulnerability of the European airspace to volcanic eruptions was brought to the attention of the public and the scientific community by the 2010 eruptions of the Icelandic volcano Eyjafjallajökull. As a consequence of this event, ash concentration thresholds replaced the “zero tolerance to ash” rule, drastically changing the requirements on satellite ash retrievals. In response to that, the ESA funded several projects aiming at creating an optimal end-to-end system for volcanic ash plume monitoring and prediction. Two of them, namely the SACS-2 and SMASH projects, developed and improved dedicated satellite-derived ash plume and sulfur dioxide level assessments. The validation of volcanic ash levels and height extracted from the GOME-2 and IASI instruments on board the MetOp-A satellite is presented in this work. EARLINET lidar measurements are compared to different satellite retrievals for two eruptive episodes in April and May 2010. Comparisons were also made between satellite retrievals and aircraft lidar data obtained with the UK's BAe-146-301 Atmospheric Research Aircraft (managed by the Facility for Airborne Atmospheric Measurements, FAAM) over the United Kingdom and the surrounding regions. The validation results are promising for most satellite products and are within the estimated uncertainties of each of the comparative data sets, but more collocation scenes would be desirable to perform a comprehensive statistical analysis. The satellite estimates and the validation data sets are better correlated for high ash optical depth values, with correlation coefficients greater than 0.8. The IASI retrievals show a better agreement concerning the ash optical depth and ash layer height when compared with the ground-based and airborne lidar data.
- Published
- 2016
- Full Text
- View/download PDF
17. On the vertical distribution of smoke in the Amazonian atmosphere during the dry season
- Author
-
F. Marenco, B. Johnson, J. M. Langridge, J. Mulcahy, A. Benedetti, S. Remy, L. Jones, K. Szpek, J. Haywood, K. Longo, and P. Artaxo
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Lidar observations of smoke aerosols have been analysed from six flights of the Facility for Airborne Atmospheric Measurements BAe-146 research aircraft over Brazil during the biomass burning season (September 2012). A large aerosol optical depth (AOD) was observed, typically ranging 0.4–0.9, along with a typical aerosol extinction coefficient of 100–400 Mm−1. The data highlight the persistent and widespread nature of the Amazonian haze, which had a consistent vertical structure, observed over a large distance ( ∼ 2200 km) during a period of 14 days. Aerosols were found near the surface; but the larger aerosol load was typically found in elevated layers that extended from 1–1.5 to 4–6 km. The measurements have been compared to model predictions with the Met Office Unified Model (MetUM) and the ECMWF-MACC model. The MetUM generally reproduced the vertical structure of the Amazonian haze observed with the lidar. The ECMWF-MACC model was also able to reproduce the general features of smoke plumes albeit with a small overestimation of the AOD. The models did not always capture localised features such as (i) smoke plumes originating from individual fires, and (ii) aerosols in the vicinity of clouds. In both these circumstances, peak extinction coefficients of the order of 1000–1500 Mm−1 and AODs as large as 1–1.8 were encountered, but these features were either underestimated or not captured in the model predictions. Smoke injection heights derived from the Global Fire Assimilation System (GFAS) for the region are compatible with the general height of the aerosol layers.
- Published
- 2016
- Full Text
- View/download PDF
18. Neurotrophic Factors in Glaucoma and Innovative Delivery Systems
- Author
-
Fabiana Mallone, Marta Sacchetti, Alice Bruscolini, Luca Scuderi, Marco Marenco, and Alessandro Lambiase
- Subjects
glaucoma ,neurotrophic factors (NTFs) ,neurotrophins (NTs) ,neuroprotection ,drug delivery systems ,microspheres ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Glaucoma is a neurodegenerative disease and a worldwide leading cause of irreversible vision loss. In the last decades, high efforts have been made to develop novel treatments effective in inducing protection and/or recovery of neural function in glaucoma, including neurotrophic factors (NTFs). These approaches have shown encouraging data in preclinical setting; however, the challenge of sustained, targeted delivery to the retina and optic nerve still prevents the clinical translation. In this paper, the authors review and discuss the most recent advances for the use of NTFs treatment in glaucoma, including intraocular delivery. Novel strategies in drug and gene delivery technology for NTFs are proving effective in promoting long-term retinal ganglion cells (RGCs) survival and related functional improvements. Results of experimental and clinical studies evaluating the efficacy and safety of biodegradable slow-release NTF-loaded microparticle devices, encapsulated NTF-secreting cells implants, mimetic ligands for NTF receptors, and viral and non-viral NTF gene vehicles are discussed. NTFs are able to prevent and even reverse apoptotic ganglion cell death. Nevertheless, neuroprotection in glaucoma remains an open issue due to the unmet need of sustained delivery to the posterior segment of the eye. The recent advances in intraocular delivery systems pave the way for possible future use of NTFs in clinical practice for the treatment of glaucoma.
- Published
- 2020
- Full Text
- View/download PDF
19. Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations
- Author
-
C. L. Ryder, J. B. McQuaid, C. Flamant, P. D. Rosenberg, R. Washington, H. E. Brindley, E. J. Highwood, J. H. Marsham, D. J. Parker, M. C. Todd, J. R. Banks, J. K. Brooke, S. Engelstaedter, V. Estelles, P. Formenti, L. Garcia-Carreras, C. Kocha, F. Marenco, H. Sodemann, C. J. T. Allen, A. Bourdon, M. Bart, C. Cavazos-Guerra, S. Chevaillier, J. Crosier, E. Darbyshire, A. R. Dean, J. R. Dorsey, J. Kent, D. O'Sullivan, K. Schepanski, K. Szpek, J. Trembath, and A. Woolley
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
The Fennec climate programme aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE (Service des Avions Français Instrumentés pour la Recherche en Environnement) Falcon 20 is described, with specific focus on instrumentation specially developed for and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include (1) the first airborne measurement of dust particles sizes of up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI (Spinning Enhanced Visible Infra-Red Imager) satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in situ observations of processes in SABL clouds showing dust acting as cloud condensation nuclei (CCN) and ice nuclei (IN) at −15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold pool (haboob) issued from deep convection over the Atlas Mountains, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area measurements suggest coarser particles provide a route for ozone depletion, (9) discrepancies between airborne coarse-mode size distributions and AERONET (AERosol Robotic NETwork) sunphotometer retrievals under light dust loadings. These results provide insights into boundary layer and dust processes in the SHL region – a region of substantial global climatic importance.
- Published
- 2015
- Full Text
- View/download PDF
20. On the relationship between the scattering phase function of cirrus and the atmospheric state
- Author
-
A. J. Baran, K. Furtado, L.-C. Labonnote, S. Havemann, J.-C. Thelen, and F. Marenco
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
This is the first paper to investigate the relationship between the shape of the scattering phase function of cirrus and the relative humidity with respect to ice (RHi, using space-based solar radiometric angle-dependent measurements. The relationship between RHi and the complexity of ice crystals has been previously studied using data from aircraft field campaigns and laboratory cloud chambers. However, to the best of our knowledge, there have been no studies to date that explore this relationship through the use of remotely sensed space-based angle-dependent solar radiometric measurements. In this paper, one case study of semi-transparent cirrus, which occurred on 25 January 2010 off the north-east coast of Scotland, is used to explore the possibility of such a relationship. Moreover, for the first time, RHi fields predicted by a high-resolution numerical weather prediction (NWP) model are combined with satellite retrievals of ice crystal complexity. The NWP model was initialised at midnight, on 25 January 2010, and the mid-latitude RHi field was extracted from the NWP model at 13:00 UTC. At about the same time, there was a PARASOL (Polarization and Anisotropy of Reflectance for Atmospheric science coupled with Observations from a Lidar) overpass, and the PARASOL swath covered the NWP-model-predicted RHi field. The cirrus case was located over Scotland and the North Sea. From the satellite channel based at 0.865 μm, the directionally averaged and directional spherical albedos were retrieved between the scattering angles of about 80 and 130°. An ensemble model of cirrus ice crystals is used to predict phase functions that vary between phase functions that exhibit optical features (referred to as pristine) and featureless phase functions. For each of the PARASOL pixels, the phase function that best minimised differences between the spherical albedos was selected. This paper reports, for this one case study, an association between the most featureless phase function model and the highest values of NWP-predicted RHi (i.e. when RHi > 1.0). For pixels associated with NWP-model-predicted RHi < 1, it was impossible to generally discriminate between phase function models at the 5% significance level. It is also shown that the NWP model prediction of the vertical profile of RHi is in good agreement with dropsonde, in situ measurements and independent aircraft-based physical retrievals of RHi. Furthermore, the NWP model prediction of the cirrus cloud-top height and its vertical extent is also found to be in good agreement with aircraft-based lidar measurements.
- Published
- 2015
- Full Text
- View/download PDF
21. Airborne verification of CALIPSO products over the Amazon: a case study of daytime observations in a complex atmospheric scene
- Author
-
F. Marenco, V. Amiridis, E. Marinou, A. Tsekeri, and J. Pelon
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
A daytime underflight of CALIPSO with the Facility for Airborne Atmospheric Measurements was performed on 20 September 2012 in the Amazon region of Brazil, during the biomass burning season. The scene is dominated by a thin elevated layer (aerosol optical depth (AOD) 0.03 at 532 nm) and a moderately turbid boundary layer (AOD ~ 0.2 at 532 nm). The boundary layer is topped with small broken stratocumulus clouds. In this complex scene, a comparison of observations from the airborne and spaceborne lidars reveals a few discrepancies. The CALIPSO detection scheme tends to miss the elevated thin layer, and also shows several gaps (~ 30%) in the boundary layer. The small clouds are not correctly removed from the signals; this can cause the CALIPSO aerosol subtype to oscillate between smoke and polluted dust and may introduce distortion in the aerosol retrieval scheme. The magnitude of the average extinction coefficient estimated from CALIPSO Level 2 data in the boundary layer is as expected, when compared to the aircraft lidar and accounting for wavelength scaling. However, when the gaps in aerosol detection mentioned above are accounted for, we are left with an overall estimate of AOD for this particular scene that is of the order of two thirds of that determined with the airborne lidar.
- Published
- 2014
- Full Text
- View/download PDF
22. Horizontal and vertical structure of the Eyjafjallajökull ash cloud over the UK: a comparison of airborne lidar observations and simulations
- Author
-
A. L. M. Grant, H. F. Dacre, D. J. Thomson, and F. Marenco
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
During April and May 2010 the ash cloud from the eruption of the Icelandic volcano Eyjafjallajökull caused widespread disruption to aviation over northern Europe. The location and impact of the eruption led to a wealth of observations of the ash cloud were being obtained which can be used to assess modelling of the long range transport of ash in the troposphere. The UK FAAM (Facility for Airborne Atmospheric Measurements) BAe-146-301 research aircraft overflew the ash cloud on a number of days during May. The aircraft carries a downward looking lidar which detected the ash layer through the backscatter of the laser light. In this study ash concentrations derived from the lidar are compared with simulations of the ash cloud made with NAME (Numerical Atmospheric-dispersion Modelling Environment), a general purpose atmospheric transport and dispersion model. The simulated ash clouds are compared to the lidar data to determine how well NAME simulates the horizontal and vertical structure of the ash clouds. Comparison between the ash concentrations derived from the lidar and those from NAME is used to define the fraction of ash emitted in the eruption that is transported over long distances compared to the total emission of tephra. In making these comparisons possible position errors in the simulated ash clouds are identified and accounted for. The ash layers seen by the lidar considered in this study were thin, with typical depths of 550–750 m. The vertical structure of the ash cloud simulated by NAME was generally consistent with the observed ash layers, although the layers in the simulated ash clouds that are identified with observed ash layers are about twice the depth of the observed layers. The structure of the simulated ash clouds were sensitive to the profile of ash emissions that was assumed. In terms of horizontal and vertical structure the best results were obtained by assuming that the emission occurred at the top of the eruption plume, consistent with the observed structure of eruption plumes. However, early in the period when the intensity of the eruption was low, assuming that the emission of ash was uniform with height gives better guidance on the horizontal and vertical structure of the ash cloud. Comparison of the lidar concentrations with those from NAME show that 2–5% of the total mass erupted by the volcano remained in the ash cloud over the United Kingdom.
- Published
- 2012
- Full Text
- View/download PDF
23. A methodology for in-situ and remote sensing of microphysical and radiative properties of contrails as they evolve into cirrus
- Author
-
H. M. Jones, J. Haywood, F. Marenco, D. O'Sullivan, J. Meyer, R. Thorpe, M. W. Gallagher, M. Krämer, K. N. Bower, G. Rädel, A. Rap, A. Woolley, P. Forster, and H. Coe
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Contrails and especially their evolution into cirrus-like clouds are thought to have very important effects on local and global radiation budgets, though are generally not well represented in global climate models. Lack of contrail parameterisations is due to the limited availability of in situ contrail measurements which are difficult to obtain. Here we present a methodology for successful sampling and interpretation of contrail microphysical and radiative data using both in situ and remote sensing instrumentation on board the FAAM BAe146 UK research aircraft as part of the COntrails Spreading Into Cirrus (COSIC) study. Forecast models were utilised to determine flight regions suitable for contrail formation and sampling; regions that were both free of cloud but showed a high probability of occurrence of air mass being supersaturated with respect to ice. The FAAM research aircraft, fitted with cloud microphysics probes and remote sensing instruments, formed a distinctive spiral-shaped contrail in the predicted area by flying in an orbit over the same ground position as the wind advected the contrails to the east. Parts of these contrails were sampled during the completion of four orbits, with sampled contrail regions being between 7 and 30 min old. Lidar measurements were useful for in-flight determination of the location and spatial extent of the contrails, and also to report extinction values that agreed well with those calculated from the microphysical data. A shortwave spectrometer was also able to detect the contrails, though the signal was weak due to the dispersion and evaporation of the contrails. Post-flight the UK Met Office NAME III dispersion model was successfully used as a tool for modelling the dispersion of the persistent contrail; determining its location and age, and determining when there was interference from other measured aircraft contrails or when cirrus encroached on the area later in the flight. The persistent contrails were found to consist of small (~10 μm) plate-like crystals where growth of ice crystals to larger sizes (~100 μm) was typically detected when higher water vapour levels were present. Using the cloud microphysics data, extinction co-efficient values were calculated and found to be 0.01–1 km−1. The contrails formed during the flight (referred to as B587) were found to have a visible lifetime of ~40 min, and limited water vapour supply was thought to have suppressed ice crystal growth.
- Published
- 2012
- Full Text
- View/download PDF
24. PHARMACOKINETIC STUDY OF TRIFLUSAL IN ELDERLY SUBJECTS AFTER SINGLE AND REPEATED ORAL ADMINISTRATION
- Author
-
F. Crema, L. D'Angelo, R. Girardello, P. Marenco, David T. Lowenthal, L. Ambrosoli, A. Poli, E. Ferrari, and G. Reboldi
- Subjects
Pharmacology ,business.industry ,Metabolite ,General Medicine ,chemistry.chemical_compound ,Regimen ,Blood pressure ,Pharmacokinetics ,chemistry ,Elimination rate constant ,Oral administration ,Heart rate ,Medicine ,Pharmacology (medical) ,Triflusal ,business ,medicine.drug - Abstract
In this study the single-dose and steady-state pharmacokinetics of unchanged triflusal and its metabolite 2-hydroxy-4-trifluoromethylbenzoic acid (HTB) were studied in 12 elderly subjects treated with a single oral administration of 300 mg triflusal and repeated oral administrations of 300 mg triflusal b.i.d. for 13 days. After a single administration, unchanged triflusal is promptly absorbed (t(max) 0.75 h, C(max) 3.83mgr;g/mL) and rapidly depleted from the systemic circulation. Its concentration was measurable only up to 1 to 4 h after administration. The apparent terminal half-life was 0.85 h. HTB proves to be quickly generated from triflusal (t(max) 2.00 h, C(max) 39.88mgr;g/mL) and slowly eliminated from the body (t = 54.6 h). With the dose regimen proposed, unchanged triflusal does not accumulate in the body. Conversely, HTB plasma concentration builds up progressively toward steady-state levels of approximately 102mgr;g/mL after 4 to 5 d of treatment. No substantial change in peak time, elimination rate constant and half-life evaluated after single-dose treatment was observed on multiple-dose regimen for unchanged triflusal and its metabolite HTB. Therefore, our findings do not indicate a time-dependent pharmacokinetics for triflusal. There were no changes in blood pressure, heart rate or laboratory safety date, i.e., biochemical or hematological profiles.
- Published
- 1996
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.