1. Agglomeration of Silicon Dioxide Nanoscale Colloids in Chemical Mechanical Polishing Wastewater: Influence of pH and Coagulant Concentration
- Author
-
Jing Yao Sin, Mohd Omar Fatehah (Malaysia), Arezoo Fereidonian Dashti, Amane Jada, Mohamad Zuki Noor Aina, Institut de Science des Matériaux de Mulhouse (IS2M), Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
- Subjects
CMP wastewater ,ferrous sulfate heptahydrate ,Materials science ,Silicon dioxide ,0211 other engineering and technologies ,Environmental engineering ,02 engineering and technology ,Colloid ,chemistry.chemical_compound ,zeta potential ,Chemical-mechanical planarization ,Zeta potential ,[CHIM]Chemical Sciences ,Nanoscopic scale ,021110 strategic, defence & security studies ,Economies of agglomeration ,pH ,General Medicine ,TA170-171 ,particle size ,021001 nanoscience & nanotechnology ,6. Clean water ,Wastewater ,Chemical engineering ,chemistry ,PACl ,[SDE]Environmental Sciences ,nanoscale colloids ,Particle size ,0210 nano-technology - Abstract
Chemical mechanical polishing (CMP) wastewater generated from semiconductor manufacturing industries is known to contain residual organic and inorganic contaminants, i.e. photoresists, acids, including silicon dioxide (SiO2), nanoparticles (NPs) and others. Nanoscale colloids in CMP wastewater have strong inclination to remain in the suspension, leading to high turbidity and chemical oxygen demand (COD). Although various types of pre-treatment have been implemented, these nanoparticles remain diffused in small clusters that pass through the treatment system. Therefore, it is crucial to select suitable pH and coagulant type in the coagulation treatment process. In this research zeta potential and dynamic light scattering measurements are applied as preliminary step aimed at determining optimum pH and coagulant dosage range based on the observation of inter particle-particle behavior in a CMP suspension. The first phase of the conducted study is to analyze nanoscale colloids in the CMP suspension in terms of zeta potential and z-average particle size as a function of pH within a range of 2 to 12. Two types of coagulants were investigated - polyaluminum chloride (PACl) and ferrous sulfate heptahydrate (FeSO4·7H2O). Similar pH analysis was conducted for the coagulants with the same pH range separately. The second phase of the study involved evaluating the interaction between nanoscale colloids and coagulants in the suspension. The dynamics of zeta potential and corresponding particle size were observed as a function of coagulant concentration. Results indicated that CMP wastewater is negatively charged, with average zeta potential of -59.8 mV and 149 d.nm at pH value of 8.7. The interaction between CMP wastewater and PACl showed that positively charged PACl rapidly adsorbed colloids in the wastewater, reducing the negative surface charge of nanoscale clusters. The interaction between CMP wastewater and FeSO4·7H2O showed that larger dosage is required to aggregate nanoscale clusters, due to its low positive value to counter negative charges of CMP wastewater.
- Published
- 2019