1. The inhibitory effect of trans-10,cis-12 conjugated linoleic acid on sterol regulatory element binding protein-1 activation in bovine mammary epithelial cells involved reduced proteasomal degradation of insulin-induced gene-1
- Author
-
Andrea J. Lengi, Benjamin A. Corl, and Liang Chen
- Subjects
Linoleic acid ,Conjugated linoleic acid ,Insulins ,Palmitic acid ,chemistry.chemical_compound ,Mammary Glands, Animal ,Genetics ,Animals ,Linoleic Acids, Conjugated ,Fatty acid synthesis ,chemistry.chemical_classification ,integumentary system ,Fatty Acids ,food and beverages ,Fatty acid ,Epithelial Cells ,Sterol regulatory element-binding protein ,chemistry ,Biochemistry ,Sterol Regulatory Element Binding Protein 1 ,Cattle ,Female ,lipids (amino acids, peptides, and proteins) ,Animal Science and Zoology ,Food Science ,Polyunsaturated fatty acid - Abstract
Trans-10,cis-12 conjugated linoleic acid (t10,c12 CLA) is well recognized as a key CLA isomer responsible for the reduction in milk fat synthesis that leads to milk fat depression in dairy cows. Sterol regulatory element binding protein-1 (SREBP1) is a key transcription factor in bovine mammary gland coordinating transcription of the genes for fatty acid synthesis. SREBP1 activation requires the removal of insulin-induced gene-1 (Insig1) that serves as a repressor of SREBP1 in the endoplasmic reticulum (ER). We hypothesized that t10,c12 CLA reduced SREBP1 activation by delaying Insig1 degradation. In the present study, we used undifferentiated bovine mammary epithelial cells (MAC-T cells) and treated them with t10,c12 CLA for 6 h. We found that SREBP1 protein expression declined over 56% when cells were treated with 60 µM or greater concentration of t10,c12 CLA. Such inhibitory effects were also observed in the mRNA expression of SREBP1-regulated genes including SREBP1, fatty acid synthetase, stearoyl-CoA desaturase, and Insig1. Compared with no CLA group, 60 µM or higher concentration of t10,c12 CLA increased Insig1 protein expression over 2-fold in cells transfected with FLAG-tagged Insig1. This stimulatory effect was not specific to t10,c12 CLA but also other polyunsaturated fatty acids including cis-9,trans-11 CLA and linoleic acid. Oleic acid had no effect on Insig1 protein expression, whereas palmitic acid decreased Insig1 protein expression. Further investigation revealed that increased abundance of FLAG-Insig1 with t10,c12 CLA was due to the inhibition of the proteasomal degradation of Insig1. The t10,c12 CLA delayed the Insig1 decay when protein synthesis was blocked. Immunoprecipitation also confirmed that the interaction between ubiquitin-like domain-containing protein 8 and Insig1, the key step of removing Insig1 from ER and freeing SREBP1 for proteolytic processing, was inhibited by t10,c12 CLA, but not palmitic acid. These findings suggested that t10,c12 CLA played a role in regulating SREBP1 activation by reducing proteasomal degradation of Insig1. We concluded that stabilized Insig1 retained SREBP1 in the ER from activation, thus reducing lipogenic gene transcription.
- Published
- 2021