1. Improvement of Oxygen Reduction Performance in Alkaline Media by Tuning Phase Structure of Pd–Bi Nanocatalysts
- Author
-
Jiangna Guo, Ming Zhou, Can Li, Jiye Fang, Lihua Zhang, and Bo Zhao
- Subjects
Chemistry ,General Chemistry ,Crystal structure ,Biochemistry ,Catalysis ,Nanomaterial-based catalyst ,Crystal ,Colloid and Surface Chemistry ,Nanocrystal ,Chemical engineering ,Phase (matter) ,Bimetallic strip ,Monoclinic crystal system - Abstract
Tuning the crystal phase of bimetallic nanocrystals offers an alternative avenue to improving their electrocatalytic performance. Herein, we present a facile and one-pot synthesis approach that is used to enhance the catalytic activity and stability toward oxygen reduction reaction (ORR) in alkaline media via control of the crystal structure of Pd-Bi nanocrystals. By merely altering the types of Pd precursors under the same conditions, the monoclinic structured Pd5Bi2 and conventional face-centered cubic (fcc) structured Pd3Bi nanocrystals with comparable size and morphology can be precisely synthesized, respectively. Interestingly, the carbon-supported monoclinic Pd5Bi2 nanocrystals exhibit superior ORR activity in alkaline media, delivering a mass activity (MA) as high as 2.05 A/mgPd. After 10,000 cycles of ORR durability test, the monoclinic structured Pd5Bi2/C nanocatalysts still remain a MA of 1.52 A/mgPd, which is 3.6 times, 16.9 times, and 21.7 times as high as those of the fcc Pd3Bi/C counterpart, commercial Pd/C, and Pt/C electrocatalysts, respectively. Moreover, structural characterizations of the monoclinic Pd5Bi2/C nanocrystals after the durability test demonstrate the excellent retention of the original size, morphology, composition, and crystal phase, greatly alleviating the leaching of the Bi component. This work provides new insight for the synthesis of multimetallic catalysts with a metastable phase and demonstrates phase-dependent catalytic performance.
- Published
- 2021