1. Identification of novel Ack1-interacting proteins and Ack1 phosphorylated sites in mouse brain by mass spectrometry
- Author
-
Maria del Mar Masdeu, Eduardo Soriano, Jesús M. Ureña, Ferran Burgaya, Beatriz G. Armendáriz, and Anna La Torre
- Subjects
Ack1 ,Chemistry ,Kinase ,tyrosine kinase ,Interleukin ,central nervous system ,Cell biology ,Synapse ,A-site ,Oncology ,Ca2+/calmodulin-dependent protein kinase ,Phosphorylation ,Cytoskeleton ,development ,Tyrosine kinase ,Research Paper - Abstract
Ack1 (activated Cdc42-associated tyrosine kinase) is a non-receptor tyrosine kinase that is highly expressed in brain. This kinase contains several protein-protein interaction domains and its action is partially regulated by phosphorylation. As a first step to address the neuronal functions of Ack1, here we screened mouse brain samples to identify proteins that interact with this kinase. Using mass spectrometry analysis, we identified new putative partners for Ack1 including cytoskeletal proteins such as Drebrin or MAP4; adhesion regulators such as NCAM1 and neurabin-2; and synapse mediators such as SynGAP, GRIN1 and GRIN3. In addition, we confirmed that Ack1 and CAMKII both co-immunoprecipitate and co-localize in neurons. We also identified that adult and P5 samples contained the phosphorylated residues Thr 104 and Ser 825, and only P5 samples contained phosphorylated Ser 722, a site linked to cancer and interleukin signaling when phosphorylated. All these findings support the notion that Ack1 could be involved in neuronal plasticity.
- Published
- 2017
- Full Text
- View/download PDF