Kojiro Shimada, Yuzo Miyazaki, Hanbing Xu, Yutaka Kondo, Dhananjay K. Deshmukh, Fei Li, Hiroaki Fujinari, Hikari Yai, Eri Tachibana, Yange Deng, Tomoki Nakayama, Mingfu Cai, Akinori Takami, Kimitaka Kawamura, Sho Ohata, Shiori Tatsuta, Michihiro Mochida, Shiro Hatakeyama, and Haobo Tan
Filter-based offline analysis of atmospheric aerosol hygroscopicity coupled to composition analysis provides information complementary to that obtained from online analysis. However, its application itself and comparison to online analysis have remained limited to date. In this study, daily submicrometer aerosol particles (PM0.95, 50 % cutoff diameter: 0.95 μm) were collected onto quartz fiber filters in Okinawa Island, a receptor of East Asian outflow, in the autumn of 2015. The chemical composition of water-soluble matter (WSM) in PM0.95 and PM0.95 itself, and their respective hygroscopicities were characterized through the offline use of an aerosol mass spectrometer and a hygroscopicity tandem differential mobility analyzer. Thereafter, results were compared with those obtained from online analyses. Sulfate dominated the WSM mass (60 %), followed by water-soluble organic matter (WSOM, 20 %) and ammonium (13 %). WSOM accounted for most (93 %) of the mass of extracted organic matter (EOM) and the atomic O to C ratios (O : C) of WSOM and EOM were high (mean ± standard deviation were, respectively, 0.84 ± 0.08 and 0.79 ± 0.08), both of which indicate highly aged characteristics of the observed aerosol. The hygroscopic growth curves showed clear hysteresis for most samples. At 85 % RH, the calculated hygroscopicity parameter κ of the WSM (κWSM), WSOM, EOM, and PM0.95 (κPM0.95) were, respectively, 0.50 ± 0.03, 0.22 ± 0.12, 0.20 ± 0.11, and 0.47 ± 0.03. An analysis using the thermodynamic E-AIM model shows, on average, that inorganic salts and WSOM respectively contributed 88 % and 12 % of the κWSM (or κPM0.95). High similarities were found between offline and online analysis for chemical compositions that are related to particle hygroscopicity (the mass fractions and O : C of organics, and the degree of neutralization), and also for aerosol hygroscopicity. As possible factors governing the variation of κWSM, the influences of WSOM abundance and the neutralization of inorganic salts were assessed. At high RH (70–90 %), the hygroscopicity of WSM and PM0.95 was affected considerably by the presence of organic components; at low RH (20–50 %), the degree of neutralization could be important. This study not only characterized aerosol hygroscopicity at the receptor site of East Asian outflow, but also shows that the offline hygroscopicity analysis is an appropriate method, at least for aerosols of the studied type. The results encourage further applications to other environments and to more in-depth hygroscopicity analysis, in particular for organic fractions.