1. Disruption of Acetyl-Lysine Turnover in Muscle Mitochondria Promotes Insulin Resistance and Redox Stress without Overt Respiratory Dysfunction
- Author
-
Deborah M. Muoio, Scott B. Crown, Louise Lantier, Michael T. Davidson, Paul A. Grimsrud, James A. Draper, Tara M. Narowski, Ashley S. Williams, Dorothy H. Slentz, Kelsey H. Fisher-Wellman, Timothy R. Koves, Maria J. Torres, and David H. Wasserman
- Subjects
0301 basic medicine ,Male ,Proteome ,Physiology ,Lysine ,Context (language use) ,Mitochondrion ,Diet, High-Fat ,Article ,Mitochondrial Proteins ,03 medical and health sciences ,Mice ,0302 clinical medicine ,Insulin resistance ,Acetyl Coenzyme A ,Sirtuin 3 ,medicine ,Animals ,Homeostasis ,Insulin ,Respiratory function ,Molecular Biology ,Beta oxidation ,Creatine Kinase ,Membrane Potential, Mitochondrial ,Mice, Knockout ,Carnitine O-Acetyltransferase ,biology ,Chemistry ,Acetylation ,Cell Biology ,Hydrogen Peroxide ,medicine.disease ,Cell biology ,Mitochondria, Muscle ,Oxidative Stress ,030104 developmental biology ,Sirtuin ,biology.protein ,Thermodynamics ,Insulin Resistance ,Energy Metabolism ,Oxidation-Reduction ,030217 neurology & neurosurgery - Abstract
This study sought to examine the functional significance of mitochondrial protein acetylation using a double knockout (DKO) mouse model harboring muscle-specific deficits in acetyl CoA buffering and lysine deacetylation, due to genetic ablation of carnitine acetyltransferase and Sirtuin 3, respectively. DKO mice are highly susceptible to extreme hyperacetylation of the mitochondrial proteome and develop a more severe form of diet-induced insulin resistance than either single KO mouse line. However, the functional phenotype of hyperacetylated DKO mitochondria is largely normal. Of the >120 measures of respiratory function assayed, the most consistently observed traits of a markedly heightened acetyl-lysine landscape are enhanced oxygen flux in the context of fatty acid fuel and elevated rates of electron leak. In sum, the findings challenge the notion that lysine acetylation causes broad-ranging damage to mitochondrial quality and performance, and raise the possibility that acetyl-lysine turnover, rather than acetyl-lysine stoichiometry, modulates redox balance and carbon flux.
- Published
- 2019