1. Engineering of Biosynthesis Pathway and NADPH Supply for Improved L-5-Methyltetrahydrofolate Production by Lactococcus lactis
- Author
-
Guocheng Du, Chuanchuan Lu, Long Liu, Jianghua Li, and Yanfeng Liu
- Subjects
0106 biological sciences ,chemistry.chemical_classification ,biology ,Chemistry ,GTP cyclohydrolase I ,Lactococcus lactis ,Dehydrogenase ,General Medicine ,biology.organism_classification ,01 natural sciences ,Applied Microbiology and Biotechnology ,Cofactor ,Metabolic engineering ,chemistry.chemical_compound ,Enzyme ,Biochemistry ,Biosynthesis ,010608 biotechnology ,biology.protein ,Intracellular ,Biotechnology - Abstract
L-5-methyltetrahydrofolate (5-MTHF) is one of the biological active forms of folate, which is widely used as a nutraceutical. However, low yield and serious pollution associated with the chemical synthesis of 5-MTHF hampers its sustainable supply. In this study, 5-MTHF production was improved by engineering the 5-MTHF biosynthesis pathway and NADPH supply in Lactococcus lactis for developing a green and sustainable biosynthesis approach. Specifically, overexpressing the key rate-limiting enzyme methylenetetrahydrofolate reductase led to intracellular 5-MTHF accumulation, reaching 18 μg/l. Next, 5-MTHF synthesis was further enhanced by combinatorial overexpression of 5-MTHF synthesis pathway enzymes with methylenetetrahydrofolate reductase, resulting in 1.7-fold enhancement. The folate supply pathway was strengthened by expressing folE encoding GTP cyclohydrolase I, which increased 5-MTHF production 2.4-fold to 72 μg/l. Furthermore, glucose-6-phosphate dehydrogenase was overexpressed to improve the redox cofactor NADPH supply for 5-MTHF biosynthesis, which led to a 60% increase in intracellular NADPH and a 35% increase in 5-MTHF production (97 μg/l). To reduce formation of the by-product 5-formyltetrahydrofolate, overexpression of 5-formyltetrahydrofolate cyclo-ligase converted 5-formyltetrahydrofolate to 5,10-methyltetrahydrofolate, which enhanced the 5-MTHF titer to 132 μg/l. Finally, combinatorial addition of folate precursors to the fermentation medium boosted 5-MTHF production, reaching 300 μg/l. To the best of our knowledge, this titer is the highest achieved by L. lactis. This study lays the foundation for further engineering of L. lactis for efficient 5-MTHF biosynthesis.
- Published
- 2021
- Full Text
- View/download PDF