1. Towards Optimized Bioavailability of 99mTc-Labeled Barbiturates for Non-invasive Imaging of Matrix Metalloproteinase Activity
- Author
-
Andreas Faust, Michael Schäfers, Lisa Honold, Christian Paul Konken, Katrin Schwegmann, Günter Haufe, Sven Hermann, Melanie Austrup, Constantin G. Daniliuc, Klaus Kopka, and Bastian Zinnhardt
- Subjects
Cancer Research ,Biodistribution ,Oncology ,Matrix metalloproteinase inhibitor ,In vivo ,Chemistry ,Spect imaging ,Cancer research ,Radiology, Nuclear Medicine and imaging ,Matrix metalloproteinase ,Ligand (biochemistry) ,In vitro ,Bioavailability - Abstract
Introduction Dysregulated activity of matrix metalloproteinases (MMPs) drives a variety of pathophysiological conditions. Non-invasive imaging of MMP activity in vivo promises diagnostic and prognostic value. However, current targeting strategies by small molecules are typically limited with respect to the bioavailability of the labeled MMP binders in vivo. To this end, we here introduce and compare three chemical modifications of a recently developed barbiturate-based radiotracer with respect to bioavailability and potential to image MMP activity in vivo. Methods Barbiturate-based MMP inhibitors with an identical targeting unit but varying hydrophilicity were synthesized, labeled with technetium-99m, and evaluated in vitro and in vivo. Biodistribution and radiotracer elimination were determined in C57/BL6 mice by serial SPECT imaging. MMP activity was imaged in a MMP-positive subcutaneous xenograft model of human K1 papillary thyroid tumors. In vivo data were validated by scintillation counting, autoradiography, and MMP immunohistochemistry. Results We prepared three new 99mTc‐labeled MMP inhibitors, bearing either a glycine ([99mTc]MEA39), lysine ([99mTc]MEA61), or the ligand HYNIC with the ionic co-ligand TPPTS ([99mTc]MEA223) yielding gradually increasing hydrophilicity. [99mTc]MEA39 and [99mTc]MEA61 were rapidly eliminated via hepatobiliary pathways. In contrast, [99mTc]MEA223 showed delayed in vivo clearance and primary renal elimination. In a thyroid tumor xenograft model, only [99mTc]MEA223 exhibited a high tumor-to-blood ratio that could easily be delineated in SPECT images. Conclusion Introduction of HYNIC/TPPTS into the barbiturate lead structure ([99mTc]MEA223) results in delayed renal elimination and allows non-invasive MMP imaging with high signal-to-noise ratios in a papillary thyroid tumor xenograft model.
- Published
- 2021
- Full Text
- View/download PDF