2,725 results on '"A, Fried"'
Search Results
2. Role of chemical production and depositional losses on formaldehyde in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM)
- Author
-
T. N. Skipper, E. L. D'Ambro, F. C. Wiser, V. F. McNeill, R. H. Schwantes, B. H. Henderson, I. R. Piletic, C. B. Baublitz, J. O. Bash, A. R. Whitehill, L. C. Valin, A. P. Mouat, J. Kaiser, G. M. Wolfe, J. M. St. Clair, T. F. Hanisco, A. Fried, B. K. Place, and H. O. T. Pye
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Formaldehyde (HCHO) is an important air pollutant with direct cancer risk and ozone-forming potential. HCHO sources are complex because HCHO is both directly emitted and produced from oxidation of most gas-phase reactive organic carbon. We update the secondary production of HCHO in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM) in the Community Multiscale Air Quality (CMAQ) model. Production of HCHO from isoprene and monoterpenes is increased, correcting an underestimate in the current version. Simulated June–August surface HCHO during peak photochemical production (11:00–15:00 LT, local time) increased by 0.6 ppb (32 %) over the southeastern USA and by 0.2 ppb (13 %) over the contiguous USA. The increased HCHO compares more favorably with satellite-based observations from the TROPOspheric Monitoring Instrument (TROPOMI) and from aircraft-based observations. Evaluation against hourly surface observations indicates a missing nighttime sink that can be improved by increased nighttime deposition, which reduces June–August nocturnal (20:00–04:00 LT) surface HCHO by 1.1 ppb (36 %) over the southeastern USA and 0.5 ppb (29 %) over the contiguous USA. The ability of CRACMM to capture peak levels of HCHO at midday is improved, particularly at sites in the northeastern USA, while peak levels at sites in the southeastern USA are improved, although still lower than observed. Using established risk assessment methods, lifetime exposure of the population in the contiguous USA (∼ 320 million) to ambient HCHO levels predicted here may result in 6200 lifetime cancer cases, with 40 % from controllable anthropogenic emissions of nitrogen oxides and reactive organic compounds. Chemistry updates will be available in CRACMM version 2 (CRACMM2) in CMAQv5.5.
- Published
- 2024
- Full Text
- View/download PDF
3. Impact of improved representation of volatile organic compound emissions and production of NOx reservoirs on modeled urban ozone production
- Author
-
K. R. Travis, B. A. Nault, J. H. Crawford, K. H. Bates, D. R. Blake, R. C. Cohen, A. Fried, S. R. Hall, L. G. Huey, Y. R. Lee, S. Meinardi, K.-E. Min, I. J. Simpson, and K. Ullman
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
The fraction of urban volatile organic compound (VOC) emissions attributable to fossil fuel combustion has been declining in many parts of the world, resulting in a need to better constrain other anthropogenic sources of these emissions. During the National Institute of Environmental Research (NIER) and National Aeronautics and Space Administration (NASA) Korea-United States Air Quality (KORUS-AQ) field study in Seoul, South Korea, during May–June 2016, air quality models underestimated ozone, formaldehyde, and peroxyacetyl nitrate (PAN), indicating an underestimate of VOCs in the emissions inventory. Here, we use aircraft observations interpreted with the GEOS-Chem chemical transport model (version 13.4.0) to assess the need for increases in VOC emissions and for a revised chemical mechanism to improve treatment of VOC speciation and chemistry. We find that the largest needed VOC emissions increases are attributable to compounds associated with volatile chemical products, liquefied petroleum gas (LPG) and natural gas emissions, and long-range transport. Revising model chemistry to better match observed VOC speciation together with increasing model emissions of underestimated VOC species increased calculated OH reactivity by +2 s−1 and ozone production by +2 ppb h−1. Ozone increased by +6 ppb below 2 km and +9 ppb at the surface, and formaldehyde and acetaldehyde increased by +30 % and +120 % aloft, respectively, all in better agreement with observations. The larger increase in acetaldehyde was attributed to ethanol emissions, which we found to be as important for ozone production as isoprene or alkenes. The increased acetaldehyde significantly reduced the model PAN bias. The need for additional unmeasured VOCs, however, was indicated by a remaining model bias of −0.8 ppb in formaldehyde and a −57 % and −52 % underestimate in higher peroxynitrates (PNs) and alkyl nitrates (ANs), respectively. We added additional chemistry to the model to represent an additional six PNs from observed VOCs but were unable to account for the majority of missing PNs. However, four of these PNs were modeled at concentrations similar to other commonly measured PNs (> 2 % of PAN) indicating that these should be measured in future campaigns and considered from other VOC emission sources (e.g., fires). We hypothesize that emissions of oxygenated VOCs (OVOCs) such as ≥ C5 aldehydes from cooking and/or alkenes associated with volatile chemical products could produce both PNs and ANs and improve remaining model biases. Emerging research on the emissions and chemistry of these species will soon allow for modeling of their impact on local and regional photochemistry.
- Published
- 2024
- Full Text
- View/download PDF
4. Bias correction of OMI HCHO columns based on FTIR and aircraft measurements and impact on top-down emission estimates
- Author
-
J.-F. Müller, T. Stavrakou, G.-M. Oomen, B. Opacka, I. De Smedt, A. Guenther, C. Vigouroux, B. Langerock, C. A. B. Aquino, M. Grutter, J. Hannigan, F. Hase, R. Kivi, E. Lutsch, E. Mahieu, M. Makarova, J.-M. Metzger, I. Morino, I. Murata, T. Nagahama, J. Notholt, I. Ortega, M. Palm, A. Röhling, W. Stremme, K. Strong, R. Sussmann, Y. Té, and A. Fried
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Spaceborne formaldehyde (HCHO) measurements constitute an excellent proxy for the sources of non-methane volatile organic compounds (NMVOCs). Past studies suggested substantial overestimations of NMVOC emissions in state-of-the-art inventories over major source regions. Here, the QA4ECV (Quality Assurance for Essential Climate Variables) retrieval of HCHO columns from OMI (Ozone Monitoring Instrument) is evaluated against (1) FTIR (Fourier-transform infrared) column observations at 26 stations worldwide and (2) aircraft in situ HCHO concentration measurements from campaigns conducted over the USA during 2012–2013. Both validation exercises show that OMI underestimates high columns and overestimates low columns. The linear regression of OMI and aircraft-based columns gives ΩOMI=0.651Ωairc+2.95×1015 molec.cm-2, with ΩOMI and Ωairc the OMI and aircraft-derived vertical columns, whereas the regression of OMI and FTIR data gives ΩOMI=0.659ΩFTIR+2.02×1015 molec.cm-2. Inverse modelling of NMVOC emissions with a global model based on OMI columns corrected for biases based on those relationships leads to much-improved agreement against FTIR data and HCHO concentrations from 11 aircraft campaigns. The optimized global isoprene emissions (∼445Tgyr-1) are 25 % higher than those obtained without bias correction. The optimized isoprene emissions bear both striking similarities and differences with recently published emissions based on spaceborne isoprene columns from the CrIS (Cross-track Infrared Sounder) sensor. Although the interannual variability of OMI HCHO columns is well understood over regions where biogenic emissions are dominant, and the HCHO trends over China and India clearly reflect anthropogenic emission changes, the observed HCHO decline over the southeastern USA remains imperfectly elucidated.
- Published
- 2024
- Full Text
- View/download PDF
5. Parameterizations of US wildfire and prescribed fire emission ratios and emission factors based on FIREX-AQ aircraft measurements
- Author
-
G. I. Gkatzelis, M. M. Coggon, C. E. Stockwell, R. S. Hornbrook, H. Allen, E. C. Apel, M. M. Bela, D. R. Blake, I. Bourgeois, S. S. Brown, P. Campuzano-Jost, J. M. St. Clair, J. H. Crawford, J. D. Crounse, D. A. Day, J. P. DiGangi, G. S. Diskin, A. Fried, J. B. Gilman, H. Guo, J. W. Hair, H. S. Halliday, T. F. Hanisco, R. Hannun, A. Hills, L. G. Huey, J. L. Jimenez, J. M. Katich, A. Lamplugh, Y. R. Lee, J. Liao, J. Lindaas, S. A. McKeen, T. Mikoviny, B. A. Nault, J. A. Neuman, J. B. Nowak, D. Pagonis, J. Peischl, A. E. Perring, F. Piel, P. S. Rickly, M. A. Robinson, A. W. Rollins, T. B. Ryerson, M. K. Schueneman, R. H. Schwantes, J. P. Schwarz, K. Sekimoto, V. Selimovic, T. Shingler, D. J. Tanner, L. Tomsche, K. T. Vasquez, P. R. Veres, R. Washenfelder, P. Weibring, P. O. Wennberg, A. Wisthaler, G. M. Wolfe, C. C. Womack, L. Xu, K. Ball, R. J. Yokelson, and C. Warneke
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Extensive airborne measurements of non-methane organic gases (NMOGs), methane, nitrogen oxides, reduced nitrogen species, and aerosol emissions from US wild and prescribed fires were conducted during the 2019 NOAA/NASA Fire Influence on Regional to Global Environments and Air Quality campaign (FIREX-AQ). Here, we report the atmospheric enhancement ratios (ERs) and inferred emission factors (EFs) for compounds measured on board the NASA DC-8 research aircraft for nine wildfires and one prescribed fire, which encompass a range of vegetation types. We use photochemical proxies to identify young smoke and reduce the effects of chemical degradation on our emissions calculations. ERs and EFs calculated from FIREX-AQ observations agree within a factor of 2, with values reported from previous laboratory and field studies for more than 80 % of the carbon- and nitrogen-containing species. Wildfire emissions are parameterized based on correlations of the sum of NMOGs with reactive nitrogen oxides (NOy) to modified combustion efficiency (MCE) as well as other chemical signatures indicative of flaming/smoldering combustion, including carbon monoxide (CO), nitrogen dioxide (NO2), and black carbon aerosol. The sum of primary NMOG EFs correlates to MCE with an R2 of 0.68 and a slope of −296 ± 51 g kg−1, consistent with previous studies. The sum of the NMOG mixing ratios correlates well with CO with an R2 of 0.98 and a slope of 137 ± 4 ppbv of NMOGs per parts per million by volume (ppmv) of CO, demonstrating that primary NMOG emissions can be estimated from CO. Individual nitrogen-containing species correlate better with NO2, NOy, and black carbon than with CO. More than half of the NOy in fresh plumes is NO2 with an R2 of 0.95 and a ratio of NO2 to NOy of 0.55 ± 0.05 ppbv ppbv−1, highlighting that fast photochemistry had already occurred in the sampled fire plumes. The ratio of NOy to the sum of NMOGs follows trends observed in laboratory experiments and increases exponentially with MCE, due to increased emission of key nitrogen species and reduced emission of NMOGs at higher MCE during flaming combustion. These parameterizations will provide more accurate boundary conditions for modeling and satellite studies of fire plume chemistry and evolution to predict the downwind formation of secondary pollutants, including ozone and secondary organic aerosol.
- Published
- 2024
- Full Text
- View/download PDF
6. Constraining emissions of volatile organic compounds from western US wildfires with WE-CAN and FIREX-AQ airborne observations
- Author
-
L. Jin, W. Permar, V. Selimovic, D. Ketcherside, R. J. Yokelson, R. S. Hornbrook, E. C. Apel, I.-T. Ku, J. L. Collett Jr., A. P. Sullivan, D. A. Jaffe, J. R. Pierce, A. Fried, M. M. Coggon, G. I. Gkatzelis, C. Warneke, E. V. Fischer, and L. Hu
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
The impact of biomass burning (BB) on the atmospheric burden of volatile organic compounds (VOCs) is highly uncertain. Here we apply the GEOS-Chem chemical transport model (CTM) to constrain BB emissions in the western USA at ∼ 25 km resolution. Across three BB emission inventories widely used in CTMs, the inventory–inventory comparison suggests that the totals of 14 modeled BB VOC emissions in the western USA agree with each other within 30 %–40 %. However, emissions for individual VOCs can differ by a factor of 1–5, driven by the regionally averaged emission ratios (ERs, reflecting both assigned ERs for specific biome and vegetation classifications) across the three inventories. We further evaluate GEOS-Chem simulations with aircraft observations made during WE-CAN (Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption and Nitrogen) and FIREX-AQ (Fire Influence on Regional to Global Environments and Air Quality) field campaigns. Despite being driven by different global BB inventories or applying various injection height assumptions, the model–observation comparison suggests that GEOS-Chem simulations underpredict observed vertical profiles by a factor of 3–7. The model shows small to no bias for most species in low-/no-smoke conditions. We thus attribute the negative model biases mostly to underestimated BB emissions in these inventories. Tripling BB emissions in the model reproduces observed vertical profiles for primary compounds, i.e., CO, propane, benzene, and toluene. However, it shows no to less significant improvements for oxygenated VOCs, particularly for formaldehyde, formic acid, acetic acid, and lumped ≥ C3 aldehydes, suggesting the model is missing secondary sources of these compounds in BB-impacted environments. The underestimation of primary BB emissions in inventories is likely attributable to underpredicted amounts of effective dry matter burned, rather than errors in fire detection, injection height, or ERs, as constrained by aircraft and ground measurements. We cannot rule out potential sub-grid uncertainties (i.e., not being able to fully resolve fire plumes) in the nested GEOS-Chem which could explain the negative model bias partially, though back-of-the-envelope calculation and evaluation using longer-term ground measurements help support the argument of the dry matter burned underestimation. The total ERs of the 14 BB VOCs implemented in GEOS-Chem only account for half of the total 161 measured VOCs (∼ 75 versus 150 ppb ppm−1). This reveals a significant amount of missing reactive organic carbon in widely used BB emission inventories. Considering both uncertainties in effective dry matter burned (× 3) and unmodeled VOCs (× 2), we infer that BB contributed to 10 % in 2019 and 45 % in 2018 (240 and 2040 Gg C) of the total VOC primary emission flux in the western USA during these two fire seasons, compared to only 1 %–10 % in the standard GEOS-Chem.
- Published
- 2023
- Full Text
- View/download PDF
7. Characterization of errors in satellite-based HCHO ∕ NO2 tropospheric column ratios with respect to chemistry, column-to-PBL translation, spatial representation, and retrieval uncertainties
- Author
-
A. H. Souri, M. S. Johnson, G. M. Wolfe, J. H. Crawford, A. Fried, A. Wisthaler, W. H. Brune, D. R. Blake, A. J. Weinheimer, T. Verhoelst, S. Compernolle, G. Pinardi, C. Vigouroux, B. Langerock, S. Choi, L. Lamsal, L. Zhu, S. Sun, R. C. Cohen, K.-E. Min, C. Cho, S. Philip, X. Liu, and K. Chance
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
The availability of formaldehyde (HCHO) (a proxy for volatile organic compound reactivity) and nitrogen dioxide (NO2) (a proxy for nitrogen oxides) tropospheric columns from ultraviolet–visible (UV–Vis) satellites has motivated many to use their ratios to gain some insights into the near-surface ozone sensitivity. Strong emphasis has been placed on the challenges that come with transforming what is being observed in the tropospheric column to what is actually in the planetary boundary layer (PBL) and near the surface; however, little attention has been paid to other sources of error such as chemistry, spatial representation, and retrieval uncertainties. Here we leverage a wide spectrum of tools and data to quantify those errors carefully. Concerning the chemistry error, a well-characterized box model constrained by more than 500 h of aircraft data from NASA's air quality campaigns is used to simulate the ratio of the chemical loss of HO2 + RO2 (LROx) to the chemical loss of NOx (LNOx). Subsequently, we challenge the predictive power of HCHO/NO2 ratios (FNRs), which are commonly applied in current research, in detecting the underlying ozone regimes by comparing them to LROx/LNOx. FNRs show a strongly linear (R2=0.94) relationship with LROx/LNOx, but only on the logarithmic scale. Following the baseline (i.e., ln(LROx/LNOx) = −1.0 ± 0.2) with the model and mechanism (CB06, r2) used for segregating NOx-sensitive from VOC-sensitive regimes, we observe a broad range of FNR thresholds ranging from 1 to 4. The transitioning ratios strictly follow a Gaussian distribution with a mean and standard deviation of 1.8 and 0.4, respectively. This implies that the FNR has an inherent 20 % standard error (1σ) resulting from not accurately describing the ROx–HOx cycle. We calculate high ozone production rates (PO3) dominated by large HCHO × NO2 concentration levels, a new proxy for the abundance of ozone precursors. The relationship between PO3 and HCHO × NO2 becomes more pronounced when moving towards NOx-sensitive regions due to nonlinear chemistry; our results indicate that there is fruitful information in the HCHO × NO2 metric that has not been utilized in ozone studies. The vast amount of vertical information on HCHO and NO2 concentrations from the air quality campaigns enables us to parameterize the vertical shapes of FNRs using a second-order rational function permitting an analytical solution for an altitude adjustment factor to partition the tropospheric columns into the PBL region. We propose a mathematical solution to the spatial representation error based on modeling isotropic semivariograms. Based on summertime-averaged data, the Ozone Monitoring Instrument (OMI) loses 12 % of its spatial information at its native resolution with respect to a high-resolution sensor like the TROPOspheric Monitoring Instrument (TROPOMI) (> 5.5 × 3.5 km2). A pixel with a grid size of 216 km2 fails at capturing ∼ 65 % of the spatial information in FNRs at a 50 km length scale comparable to the size of a large urban center (e.g., Los Angeles). We ultimately leverage a large suite of in situ and ground-based remote sensing measurements to draw the error distributions of daily TROPOMI and OMI tropospheric NO2 and HCHO columns. At a 68 % confidence interval (1σ), errors pertaining to daily TROPOMI observations, either HCHO or tropospheric NO2 columns, should be above 1.2–1.5 × 1016 molec. cm−2 to attain a 20 %–30 % standard error in the ratio. This level of error is almost non-achievable with the OMI given its large error in HCHO. The satellite column retrieval error is the largest contributor to the total error (40 %–90 %) in the FNRs. Due to a stronger signal in cities, the total relative error (< 50 %) tends to be mild, whereas areas with low vegetation and anthropogenic sources (e.g., the Rocky Mountains) are markedly uncertain (> 100 %). Our study suggests that continuing development in the retrieval algorithm and sensor design and calibration is essential to be able to advance the application of FNRs beyond a qualitative metric.
- Published
- 2023
- Full Text
- View/download PDF
8. Atmospheric biogenic volatile organic compounds in the Alaskan Arctic tundra: constraints from measurements at Toolik Field Station
- Author
-
V. Selimovic, D. Ketcherside, S. Chaliyakunnel, C. Wielgasz, W. Permar, H. Angot, D. B. Millet, A. Fried, D. Helmig, and L. Hu
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
The Arctic is a climatically sensitive region that has experienced warming at almost 3 times the global average rate in recent decades, leading to an increase in Arctic greenness and a greater abundance of plants that emit biogenic volatile organic compounds (BVOCs). These changes in atmospheric emissions are expected to significantly modify the overall oxidative chemistry of the region and lead to changes in VOC composition and abundance, with implications for atmospheric processes. Nonetheless, observations needed to constrain our current understanding of these issues in this critical environment are sparse. This work presents novel atmospheric in situ proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) measurements of VOCs at Toolik Field Station (TFS; 68∘38′ N, 149∘36' W), in the Alaskan Arctic tundra during May–June 2019. We employ a custom nested grid version of the GEOS-Chem chemical transport model (CTM), driven with MEGANv2.1 (Model of Emissions of Gases and Aerosols from Nature version 2.1) biogenic emissions for Alaska at 0.25∘ × 0.3125∘ resolution, to interpret the observations in terms of their constraints on BVOC emissions, total reactive organic carbon (ROC) composition, and calculated OH reactivity (OHr) in this environment. We find total ambient mole fraction of 78 identified VOCs to be 6.3 ± 0.4 ppbv (10.8 ± 0.5 ppbC), with overwhelming (> 80 %) contributions are from short-chain oxygenated VOCs (OVOCs) including methanol, acetone and formaldehyde. Isoprene was the most abundant terpene identified. GEOS-Chem captures the observed isoprene (and its oxidation products), acetone and acetaldehyde abundances within the combined model and observation uncertainties (±25 %), but underestimates other OVOCs including methanol, formaldehyde, formic acid and acetic acid by a factor of 3 to 12. The negative model bias for methanol is attributed to underestimated biogenic methanol emissions for the Alaskan tundra in MEGANv2.1. Observed formaldehyde mole fractions increase exponentially with air temperature, likely reflecting its biogenic precursors and pointing to a systematic model underprediction of its secondary production. The median campaign-calculated OHr from VOCs measured at TFS was 0.7 s−1, roughly 5 % of the values typically reported in lower-latitude forested ecosystems. Ten species account for over 80 % of the calculated VOC OHr, with formaldehyde, isoprene and acetaldehyde together accounting for nearly half of the total. Simulated OHr based on median-modeled VOCs included in GEOS-Chem averages 0.5 s−1 and is dominated by isoprene (30 %) and monoterpenes (17 %). The data presented here serve as a critical evaluation of our knowledge of BVOCs and ROC budgets in high-latitude environments and represent a foundation for investigating and interpreting future warming-driven changes in VOC emissions in the Alaskan Arctic tundra.
- Published
- 2022
- Full Text
- View/download PDF
9. Composition and reactivity of volatile organic compounds in the South Coast Air Basin and San Joaquin Valley of California
- Author
-
S. Liu, B. Barletta, R. S. Hornbrook, A. Fried, J. Peischl, S. Meinardi, M. Coggon, A. Lamplugh, J. B. Gilman, G. I. Gkatzelis, C. Warneke, E. C. Apel, A. J. Hills, I. Bourgeois, J. Walega, P. Weibring, D. Richter, T. Kuwayama, M. FitzGibbon, and D. Blake
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Comprehensive aircraft measurements of volatile organic compounds (VOCs) covering the South Coast Air Basin (SoCAB) and San Joaquin Valley (SJV) of California were obtained in the summer of 2019. Combined with the CO, CH4, and NOx data, the total calculated gas-phase hydroxyl radical reactivity (cOHRTOTAL) was quantified to be 6.1 and 4.6 s−1 for the SoCAB and SJV, respectively. VOCs accounted for ∼ 60 %–70 % of the cOHRTOTAL in both basins. In particular, oxygenated VOCs (OVOCs) contributed >60 % of the cOHR of total VOCs (cOHRVOC) and the total observed VOC mixing ratio. Primary biogenic VOCs (BVOCs) represented a minor fraction (<2 %) of the total VOC mixing ratio but accounted for 21 % and 6 % of the cOHRVOC in the SoCAB and SJV, respectively. Furthermore, the contribution of BVOCs to the cOHRVOC increased with increasing cOHRVOC in the SoCAB, suggesting that BVOCs were important ozone precursors during high ozone episodes. Spatially, the trace gases were heterogeneously distributed in the SoCAB, with their mixing ratios and cOHR being significantly greater over the inland regions than the coast, while their levels were more evenly distributed in SJV. The results highlight that a better grasp of the emission rates and sources of OVOCs and BVOCs is essential for a predictive understanding of the ozone abundance and distribution in California.
- Published
- 2022
- Full Text
- View/download PDF
10. Photochemical evolution of the 2013 California Rim Fire: synergistic impacts of reactive hydrocarbons and enhanced oxidants
- Author
-
G. M. Wolfe, T. F. Hanisco, H. L. Arkinson, D. R. Blake, A. Wisthaler, T. Mikoviny, T. B. Ryerson, I. Pollack, J. Peischl, P. O. Wennberg, J. D. Crounse, J. M. St. Clair, A. Teng, L. G. Huey, X. Liu, A. Fried, P. Weibring, D. Richter, J. Walega, S. R. Hall, K. Ullmann, J. L. Jimenez, P. Campuzano-Jost, T. P. Bui, G. Diskin, J. R. Podolske, G. Sachse, and R. C. Cohen
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Large wildfires influence regional atmospheric composition, but chemical complexity challenges model predictions of downwind impacts. Here, we elucidate key connections within gas-phase photochemistry and assess novel chemical processes via a case study of the 2013 California Rim Fire plume. Airborne in situ observations, acquired during the NASA Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) mission, illustrate the evolution of volatile organic compounds (VOCs), oxidants, and reactive nitrogen over 12 h of atmospheric aging. Measurements show rapid formation of ozone and peroxyacyl nitrates (PNs), sustained peroxide production, and prolonged enhancements in oxygenated VOCs and nitrogen oxides (NOx). Observations and Lagrangian trajectories constrain a 0-D puff model that approximates plume photochemical history and provides a framework for evaluating process interactions. Simulations examine the effects of (1) previously unmeasured reactive VOCs identified in recent laboratory studies and (2) emissions and secondary production of nitrous acid (HONO). Inclusion of estimated unmeasured VOCs leads to a 250 % increase in OH reactivity and a 70 % increase in radical production via oxygenated VOC photolysis. HONO amplifies radical cycling and serves as a downwind NOx source, although impacts depend on how HONO is introduced. The addition of initial HONO (representing primary emissions) or particulate nitrate photolysis amplifies ozone production, while heterogeneous conversion of NO2 suppresses ozone formation. Analysis of radical initiation rates suggests that oxygenated VOC photolysis is a major radical source, exceeding HONO photolysis when averaged over the first 2 h of aging. Ozone production chemistry transitions from VOC sensitive to NOx sensitive within the first hour of plume aging, with both peroxide and organic nitrate formation contributing significantly to radical termination. To simulate smoke plume chemistry accurately, models should simultaneously account for the full reactive VOC pool and all relevant oxidant sources.
- Published
- 2022
- Full Text
- View/download PDF
11. Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol
- Author
-
D. Kim, C. Cho, S. Jeong, S. Lee, B. A. Nault, P. Campuzano-Jost, D. A. Day, J. C. Schroder, J. L. Jimenez, R. Volkamer, D. R. Blake, A. Wisthaler, A. Fried, J. P. DiGangi, G. S. Diskin, S. E. Pusede, S. R. Hall, K. Ullmann, L. G. Huey, D. J. Tanner, J. Dibb, C. J. Knote, and K.-E. Min
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Glyoxal (CHOCHO), the simplest dicarbonyl in the troposphere, is a potential precursor for secondary organic aerosol (SOA) and brown carbon (BrC) affecting air quality and climate. The airborne measurement of CHOCHO concentrations during the KORUS-AQ (KORea–US Air Quality study) campaign in 2016 enables detailed quantification of loss mechanisms pertaining to SOA formation in the real atmosphere. The production of this molecule was mainly from oxidation of aromatics (59 %) initiated by hydroxyl radical (OH). CHOCHO loss to aerosol was found to be the most important removal path (69 %) and contributed to roughly ∼ 20 % (3.7 µg sm−3 ppmv−1 h−1, normalized with excess CO) of SOA growth in the first 6 h in Seoul Metropolitan Area. A reactive uptake coefficient (γ) of ∼ 0.008 best represents the loss of CHOCHO by surface uptake during the campaign. To our knowledge, we show the first field observation of aerosol surface-area-dependent (Asurf) CHOCHO uptake, which diverges from the simple surface uptake assumption as Asurf increases in ambient condition. Specifically, under the low (high) aerosol loading, the CHOCHO effective uptake rate coefficient, keff,uptake, linearly increases (levels off) with Asurf; thus, the irreversible surface uptake is a reasonable (unreasonable) approximation for simulating CHOCHO loss to aerosol. Dependence on photochemical impact and changes in the chemical and physical aerosol properties “free water”, as well as aerosol viscosity, are discussed as other possible factors influencing CHOCHO uptake rate. Our inferred Henry's law coefficient of CHOCHO, 7.0×108 M atm−1, is ∼ 2 orders of magnitude higher than those estimated from salting-in effects constrained by inorganic salts only consistent with laboratory findings that show similar high partitioning into water-soluble organics, which urges more understanding on CHOCHO solubility under real atmospheric conditions.
- Published
- 2022
- Full Text
- View/download PDF
12. Formaldehyde evolution in US wildfire plumes during the Fire Influence on Regional to Global Environments and Air Quality experiment (FIREX-AQ)
- Author
-
J. Liao, G. M. Wolfe, R. A. Hannun, J. M. St. Clair, T. F. Hanisco, J. B. Gilman, A. Lamplugh, V. Selimovic, G. S. Diskin, J. B. Nowak, H. S. Halliday, J. P. DiGangi, S. R. Hall, K. Ullmann, C. D. Holmes, C. H. Fite, A. Agastra, T. B. Ryerson, J. Peischl, I. Bourgeois, C. Warneke, M. M. Coggon, G. I. Gkatzelis, K. Sekimoto, A. Fried, D. Richter, P. Weibring, E. C. Apel, R. S. Hornbrook, S. S. Brown, C. C. Womack, M. A. Robinson, R. A. Washenfelder, P. R. Veres, and J. A. Neuman
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Formaldehyde (HCHO) is one of the most abundant non-methane volatile organic compounds (VOCs) emitted by fires. HCHO also undergoes chemical production and loss as a fire plume ages, and it can be an important oxidant precursor. In this study, we disentangle the processes controlling HCHO by examining its evolution in wildfire plumes sampled by the NASA DC-8 during the Fire Influence on Regional to Global Environments and Air Quality experiment (FIREX-AQ) field campaign. In 9 of the 12 analyzed plumes, dilution-normalized HCHO increases with physical age (range 1–6 h). The balance of HCHO loss (mainly via photolysis) and production (via OH-initiated VOC oxidation) seems to control the sign and magnitude of this trend. Plume-average OH concentrations, calculated from VOC decays, range from −0.5 (± 0.5) × 106 to 5.3 (± 0.7) × 106 cm−3. The production and loss rates of dilution-normalized HCHO seem to decrease with plume age. Plume-to-plume variability in dilution-normalized secondary HCHO production correlates with OH abundance rather than normalized OH reactivity, suggesting that OH is the main driver of fire-to-fire variability in HCHO secondary production. Analysis suggests an effective HCHO yield of 0.33 (± 0.05) per VOC molecule oxidized for the 12 wildfire plumes. This finding can help connect space-based HCHO observations to the oxidizing capacity of the atmosphere and to VOC emissions.
- Published
- 2021
- Full Text
- View/download PDF
13. Optimized Loopable Translation as a Platform for the Synthesis of Repetitive Proteins
- Author
-
Sea On Lee, Qi Xie, and Stephen D. Fried
- Subjects
Chemistry ,QD1-999 - Published
- 2021
- Full Text
- View/download PDF
14. Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality
- Author
-
B. A. Nault, D. S. Jo, B. C. McDonald, P. Campuzano-Jost, D. A. Day, W. Hu, J. C. Schroder, J. Allan, D. R. Blake, M. R. Canagaratna, H. Coe, M. M. Coggon, P. F. DeCarlo, G. S. Diskin, R. Dunmore, F. Flocke, A. Fried, J. B. Gilman, G. Gkatzelis, J. F. Hamilton, T. F. Hanisco, P. L. Hayes, D. K. Henze, A. Hodzic, J. Hopkins, M. Hu, L. G. Huey, B. T. Jobson, W. C. Kuster, A. Lewis, M. Li, J. Liao, M. O. Nawaz, I. B. Pollack, J. Peischl, B. Rappenglück, C. E. Reeves, D. Richter, J. M. Roberts, T. B. Ryerson, M. Shao, J. M. Sommers, J. Walega, C. Warneke, P. Weibring, G. M. Wolfe, D. E. Young, B. Yuan, Q. Zhang, J. A. de Gouw, and J. L. Jimenez
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Anthropogenic secondary organic aerosol (ASOA), formed from anthropogenic emissions of organic compounds, constitutes a substantial fraction of the mass of submicron aerosol in populated areas around the world and contributes to poor air quality and premature mortality. However, the precursor sources of ASOA are poorly understood, and there are large uncertainties in the health benefits that might accrue from reducing anthropogenic organic emissions. We show that the production of ASOA in 11 urban areas on three continents is strongly correlated with the reactivity of specific anthropogenic volatile organic compounds. The differences in ASOA production across different cities can be explained by differences in the emissions of aromatics and intermediate- and semi-volatile organic compounds, indicating the importance of controlling these ASOA precursors. With an improved model representation of ASOA driven by the observations, we attribute 340 000 PM2.5-related premature deaths per year to ASOA, which is over an order of magnitude higher than prior studies. A sensitivity case with a more recently proposed model for attributing mortality to PM2.5 (the Global Exposure Mortality Model) results in up to 900 000 deaths. A limitation of this study is the extrapolation from cities with detailed studies and regions where detailed emission inventories are available to other regions where uncertainties in emissions are larger. In addition to further development of institutional air quality management infrastructure, comprehensive air quality campaigns in the countries in South and Central America, Africa, South Asia, and the Middle East are needed for further progress in this area.
- Published
- 2021
- Full Text
- View/download PDF
15. Validation of satellite formaldehyde (HCHO) retrievals using observations from 12 aircraft campaigns
- Author
-
L. Zhu, G. González Abad, C. R. Nowlan, C. Chan Miller, K. Chance, E. C. Apel, J. P. DiGangi, A. Fried, T. F. Hanisco, R. S. Hornbrook, L. Hu, J. Kaiser, F. N. Keutsch, W. Permar, J. M. St. Clair, and G. M. Wolfe
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Formaldehyde (HCHO) has been measured from space for more than 2 decades. Owing to its short atmospheric lifetime, satellite HCHO data are used widely as a proxy of volatile organic compounds (VOCs; please refer to Appendix A for abbreviations and acronyms), providing constraints on underlying emissions and chemistry. However, satellite HCHO products from different satellite sensors using different algorithms have received little validation so far. The accuracy and consistency of HCHO retrievals remain largely unclear. Here we develop a validation platform for satellite HCHO retrievals using in situ observations from 12 aircraft campaigns with a chemical transport model (GEOS-Chem) as the intercomparison method. Application to the NASA operational OMI HCHO product indicates negative biases (−44.5 % to −21.7 %) under high-HCHO conditions, while it indicates high biases (+66.1 % to +112.1 %) under low-HCHO conditions. Under both conditions, HCHO a priori vertical profiles are likely not the main driver of the biases. By providing quick assessment of systematic biases in satellite products over large domains, the platform facilitates, in an iterative process, optimization of retrieval settings and the minimization of retrieval biases. It is also complementary to localized validation efforts based on ground observations and aircraft spirals.
- Published
- 2020
- Full Text
- View/download PDF
16. An inversion of NOx and non-methane volatile organic compound (NMVOC) emissions using satellite observations during the KORUS-AQ campaign and implications for surface ozone over East Asia
- Author
-
A. H. Souri, C. R. Nowlan, G. González Abad, L. Zhu, D. R. Blake, A. Fried, A. J. Weinheimer, A. Wisthaler, J.-H. Woo, Q. Zhang, C. E. Chan Miller, X. Liu, and K. Chance
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
The absence of up-to-date emissions has been a major impediment to accurately simulating aspects of atmospheric chemistry and to precisely quantifying the impact of changes in emissions on air pollution. Hence, a nonlinear joint analytical inversion (Gauss–Newton method) of both volatile organic compounds (VOCs) and nitrogen oxide (NOx) emissions is made by exploiting the Smithsonian Astrophysical Observatory (SAO) Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-NM) formaldehyde (HCHO) and the National Aeronautics and Space Administration (NASA) Ozone Monitoring Instrument (OMI) tropospheric nitrogen dioxide (NO2) columns during the Korea–United States Air Quality (KORUS-AQ) campaign over East Asia in May–June 2016. Effects of the chemical feedback of NOx and VOCs on both NO2 and HCHO are implicitly included by iteratively optimizing the inversion. Emission uncertainties are greatly narrowed (averaging kernels > 0.8, which is the mathematical presentation of the partition of information gained from the satellite observations with respect to the prior knowledge) over medium- to high-emitting areas such as cities and dense vegetation. The prior amount of total NOx emissions is mainly dictated by values reported in the MIX-Asia 2010 inventory. After the inversion we conclude that there is a decline in emissions (before, after, change) for China (87.94±44.09 Gg d−1, 68.00±15.94 Gg d−1, −23 %), North China Plain (NCP) (27.96±13.49 Gg d−1, 19.05±2.50 Gg d−1, −32 %), Pearl River Delta (PRD) (4.23±1.78 Gg d−1, 2.70±0.32 Gg d−1, −36 %), Yangtze River Delta (YRD) (9.84±4.68 Gg d−1, 5.77±0.51 Gg d−1, −41 %), Taiwan (1.26±0.57 Gg d−1, 0.97±0.33 Gg d−1, −23 %), and Malaysia (2.89±2.77 Gg d−1, 2.25±1.34 Gg d−1, −22 %), all of which have effectively implemented various stringent regulations. In contrast, South Korea (2.71±1.34 Gg d−1, 2.95±0.58 Gg d−1, +9 %) and Japan (3.53±1.71 Gg d−1, 3.96±1.04 Gg d−1, +12 %) are experiencing an increase in NOx emissions, potentially due to an increased number of diesel vehicles and new thermal power plants. We revisit the well-documented positive bias (by a factor of 2 to 3) of MEGAN v2.1 (Model of Emissions of Gases and Aerosols from Nature) in terms of biogenic VOC emissions in the tropics. The inversion, however, suggests a larger growth of VOCs (mainly anthropogenic) over NCP (25 %) than previously reported (6 %) relative to 2010. The spatial variation in both the magnitude and sign of NOx and VOC emissions results in nonlinear responses of ozone production and loss. Due to a simultaneous decrease and increase in NOx∕VOC over NCP and YRD, we observe a ∼53 % reduction in the ratio of the chemical loss of NOx (LNOx) to the chemical loss of ROx (RO2+HO2) over the surface transitioning toward NOx-sensitive regimes, which in turn reduces and increases the afternoon chemical loss and production of ozone through NO2+OH (−0.42 ppbv h−1)∕HO2 (and RO2)+NO (+0.31 ppbv h−1). Conversely, a combined decrease in NOx and VOC emissions in Taiwan, Malaysia, and southern China suppresses the formation of ozone. Simulations using the updated emissions indicate increases in maximum daily 8 h average (MDA8) surface ozone over China (0.62 ppbv), NCP (4.56 ppbv), and YRD (5.25 ppbv), suggesting that emission control strategies on VOCs should be prioritized to curb ozone production rates in these regions. Taiwan, Malaysia, and PRD stand out as regions undergoing lower MDA8 ozone levels resulting from the NOx reductions occurring predominantly in NOx-sensitive regimes.
- Published
- 2020
- Full Text
- View/download PDF
17. On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America
- Author
-
X. Chen, D. B. Millet, H. B. Singh, A. Wisthaler, E. C. Apel, E. L. Atlas, D. R. Blake, I. Bourgeois, S. S. Brown, J. D. Crounse, J. A. de Gouw, F. M. Flocke, A. Fried, B. G. Heikes, R. S. Hornbrook, T. Mikoviny, K.-E. Min, M. Müller, J. A. Neuman, D. W. O'Sullivan, J. Peischl, G. G. Pfister, D. Richter, J. M. Roberts, T. B. Ryerson, S. R. Shertz, C. R. Thompson, V. Treadaway, P. R. Veres, J. Walega, C. Warneke, R. A. Washenfelder, P. Weibring, and B. Yuan
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
We apply a high-resolution chemical transport model (GEOS-Chem CTM) with updated treatment of volatile organic compounds (VOCs) and a comprehensive suite of airborne datasets over North America to (i) characterize the VOC budget and (ii) test the ability of current models to capture the distribution and reactivity of atmospheric VOCs over this region. Biogenic emissions dominate the North American VOC budget in the model, accounting for 70 % and 95 % of annually emitted VOC carbon and reactivity, respectively. Based on current inventories anthropogenic emissions have declined to the point where biogenic emissions are the dominant summertime source of VOC reactivity even in most major North American cities. Methane oxidation is a 2× larger source of nonmethane VOCs (via production of formaldehyde and methyl hydroperoxide) over North America in the model than are anthropogenic emissions. However, anthropogenic VOCs account for over half of the ambient VOC loading over the majority of the region owing to their longer aggregate lifetime. Fires can be a significant VOC source episodically but are small on average. In the planetary boundary layer (PBL), the model exhibits skill in capturing observed variability in total VOC abundance (R2=0.36) and reactivity (R2=0.54). The same is not true in the free troposphere (FT), where skill is low and there is a persistent low model bias (∼ 60 %), with most (27 of 34) model VOCs underestimated by more than a factor of 2. A comparison of PBL : FT concentration ratios over the southeastern US points to a misrepresentation of PBL ventilation as a contributor to these model FT biases. We also find that a relatively small number of VOCs (acetone, methanol, ethane, acetaldehyde, formaldehyde, isoprene + oxidation products, methyl hydroperoxide) drive a large fraction of total ambient VOC reactivity and associated model biases; research to improve understanding of their budgets is thus warranted. A source tracer analysis suggests a current overestimate of biogenic sources for hydroxyacetone, methyl ethyl ketone and glyoxal, an underestimate of biogenic formic acid sources, and an underestimate of peroxyacetic acid production across biogenic and anthropogenic precursors. Future work to improve model representations of vertical transport and to address the VOC biases discussed are needed to advance predictions of ozone and SOA formation.
- Published
- 2019
- Full Text
- View/download PDF
18. Towards a satellite formaldehyde – in situ hybrid estimate for organic aerosol abundance
- Author
-
J. Liao, T. F. Hanisco, G. M. Wolfe, J. St. Clair, J. L. Jimenez, P. Campuzano-Jost, B. A. Nault, A. Fried, E. A. Marais, G. Gonzalez Abad, K. Chance, H. T. Jethva, T. B. Ryerson, C. Warneke, and A. Wisthaler
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Organic aerosol (OA) is one of the main components of the global particulate burden and intimately links natural and anthropogenic emissions with air quality and climate. It is challenging to accurately represent OA in global models. Direct quantification of global OA abundance is not possible with current remote sensing technology; however, it may be possible to exploit correlations of OA with remotely observable quantities to infer OA spatiotemporal distributions. In particular, formaldehyde (HCHO) and OA share common sources via both primary emissions and secondary production from oxidation of volatile organic compounds (VOCs). Here, we examine OA–HCHO correlations using data from summertime airborne campaigns investigating biogenic (NASA SEAC4RS and DC3), biomass burning (NASA SEAC4RS), and anthropogenic conditions (NOAA CalNex and NASA KORUS-AQ). In situ OA correlates well with HCHO (r=0.59–0.97), and the slope and intercept of this relationship depend on the chemical regime. For biogenic and anthropogenic regions, the OA–HCHO slopes are higher in low NOx conditions, because HCHO yields are lower and aerosol yields are likely higher. The OA–HCHO slope of wildfires is over 9 times higher than that for biogenic and anthropogenic sources. The OA–HCHO slope is higher for highly polluted anthropogenic sources (e.g., KORUS-AQ) than less polluted (e.g., CalNex) anthropogenic sources. Near-surface OAs over the continental US are estimated by combining the observed in situ relationships with HCHO column retrievals from NASA's Ozone Monitoring Instrument (OMI). HCHO vertical profiles used in OA estimates are from climatology a priori profiles in the OMI HCHO retrieval or output of specific period from a newer version of GEOS-Chem. Our OA estimates compare well with US EPA IMPROVE data obtained over summer months (e.g., slope =0.60–0.62, r=0.56 for August 2013), with correlation performance comparable to intensively validated GEOS-Chem (e.g., slope =0.57, r=0.56) with IMPROVE OA and superior to the satellite-derived total aerosol extinction (r=0.41) with IMPROVE OA. This indicates that OA estimates are not very sensitive to these HCHO vertical profiles and that a priori profiles from OMI HCHO retrieval have a similar performance to that of the newer model version in estimating OA. Improving the detection limit of satellite HCHO and expanding in situ airborne HCHO and OA coverage in future missions will improve the quality and spatiotemporal coverage of our OA estimates, potentially enabling constraints on global OA distribution.
- Published
- 2019
- Full Text
- View/download PDF
19. Estimates of Quantum Tunneling Effects for Hydrogen Diffusion in PuO2
- Author
-
Nir Goldman, Luis Zepeda-Ruiz, Ryan G. Mullen, Rebecca K. Lindsey, C. Huy Pham, Laurence E. Fried, and Jonathan L. Belof
- Subjects
plutonium oxide ,Density Functional Theory ,hydrogen diffusion ,quantum tunneling effects ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
We detail the estimation of activation energies and quantum nuclear vibrational tunneling effects for hydrogen diffusion in PuO2 based on Density Functional Theory calculations and a quantum double well approximation. We find that results are relatively insensitive to choice of exchange correlation functional. In addition, the representation of spin in the system and use of an extended Hubbard U correction has only a small effect on hydrogen point defect formation energies when the PuO2 lattice is held fixed at the experimental density. We then compute approximate activation energies for transitions between hydrogen interstitial sites seeded by a semi-empirical quantum model and determine the quantum tunneling enhancement relative to classical kinetic rates. Our model indicates that diffusion rates in H/PuO2 systems could be enhanced by more than one order of magnitude at ambient conditions and that these effects persist at high temperature. The method we propose here can be used as a fast screening tool for assessing possible quantum nuclear vibrational effects in any number of condensed phase materials and surfaces, where hydrogen hopping tends to follow well defined minimum energy pathways.
- Published
- 2022
- Full Text
- View/download PDF
20. Thin-Layer and Paper Chromatography.
- Author
-
Sherma, Joseph and Fried, Bernard
- Abstract
Reviews literature on chromatography examining: books, reviews, student experiments; chromatographic systems, techniques, apparatus; detecting and identification of separated zones; preparative chromatography and radiochromatography; and applications related to specific materials (such as acids, alcohols, amino acids, antibiotics, enzymes, dyes, pigments, hormones, steroids, hydrocarbons, nucleic acids, toxins, pharmaceuticals, drugs, phenols, and vitamins. (JN)
- Published
- 1984
21. Investigation of Combinatorial WO3-MoO3 Mixed Layers by Spectroscopic Ellipsometry Using Different Optical Models
- Author
-
Miklos Fried, Renato Bogar, Daniel Takacs, Zoltan Labadi, Zsolt Endre Horvath, and Zsolt Zolnai
- Subjects
spectroscopic ellipsometry ,combinatorial approach ,metal oxides ,Chemistry ,QD1-999 - Abstract
Reactive (Ar-O2 plasma) magnetron sputtered WO3-MoO3 (nanometer scaled) mixed layers were investigated and mapped by Spectroscopic Ellipsometry (SE). The W- and Mo-targets were placed separately, and 30 × 30 cm glass substrates were slowly moved under the two (W and Mo) separated targets. We used different (oscillator- and Effective Medium Approximation, EMA-based) optical models to obtain the thickness and composition maps of the sample layer relatively quickly and in a cost-effective and contactless way. In addition, we used Rutherford Backscattering Spectrometry to check the SE results. Herein, we compare the “goodness” of different optical models depending upon the sample preparation conditions, for instance, the speed and cycle number of the substrate motion. Finally, we can choose between appropriate optical models (2-Tauc-Lorentz oscillator model vs. the Bruggeman Effective Medium Approximation, BEMA) depending on the process parameters. If one has more than one “molecular layer” in the “sublayers”, BEMA can be used. If one has an atomic mixture, the multiple oscillator model is better (more precise) for this type of layer structure.
- Published
- 2022
- Full Text
- View/download PDF
22. Secondary organic aerosol production from local emissions dominates the organic aerosol budget over Seoul, South Korea, during KORUS-AQ
- Author
-
B. A. Nault, P. Campuzano-Jost, D. A. Day, J. C. Schroder, B. Anderson, A. J. Beyersdorf, D. R. Blake, W. H. Brune, Y. Choi, C. A. Corr, J. A. de Gouw, J. Dibb, J. P. DiGangi, G. S. Diskin, A. Fried, L. G. Huey, M. J. Kim, C. J. Knote, K. D. Lamb, T. Lee, T. Park, S. E. Pusede, E. Scheuer, K. L. Thornhill, J.-H. Woo, and J. L. Jimenez
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Organic aerosol (OA) is an important fraction of submicron aerosols. However, it is challenging to predict and attribute the specific organic compounds and sources that lead to observed OA loadings, largely due to contributions from secondary production. This is especially true for megacities surrounded by numerous regional sources that create an OA background. Here, we utilize in situ gas and aerosol observations collected on board the NASA DC-8 during the NASA–NIER KORUS-AQ (Korea–United States Air Quality) campaign to investigate the sources and hydrocarbon precursors that led to the secondary OA (SOA) production observed over Seoul. First, we investigate the contribution of transported OA to total loadings observed over Seoul by using observations over the Yellow Sea coupled to FLEXPART Lagrangian simulations. During KORUS-AQ, the average OA loading advected into Seoul was ∼1–3 µg sm−3. Second, taking this background into account, the dilution-corrected SOA concentration observed over Seoul was ∼140 µgsm-3ppmv-1 at 0.5 equivalent photochemical days. This value is at the high end of what has been observed in other megacities around the world (20–70 µgsm-3ppmv-1 at 0.5 equivalent days). For the average OA concentration observed over Seoul (13 µg sm−3), it is clear that production of SOA from locally emitted precursors is the major source in the region. The importance of local SOA production was supported by the following observations. (1) FLEXPART source contribution calculations indicate any hydrocarbons with a lifetime of less than 1 day, which are shown to dominate the observed SOA production, mainly originate from South Korea. (2) SOA correlated strongly with other secondary photochemical species, including short-lived species (formaldehyde, peroxy acetyl nitrate, sum of acyl peroxy nitrates, dihydroxytoluene, and nitrate aerosol). (3) Results from an airborne oxidation flow reactor (OFR), flown for the first time, show a factor of 4.5 increase in potential SOA concentrations over Seoul versus over the Yellow Sea, a region where background air masses that are advected into Seoul can be measured. (4) Box model simulations reproduce SOA observed over Seoul within 11 % on average and suggest that short-lived hydrocarbons (i.e., xylenes, trimethylbenzenes, and semi-volatile and intermediate-volatility compounds) were the main SOA precursors over Seoul. Toluene alone contributes 9 % of the modeled SOA over Seoul. Finally, along with these results, we use the metric ΔOA/ΔCO2 to examine the amount of OA produced per fuel consumed in a megacity, which shows less variability across the world than ΔOA∕ΔCO.
- Published
- 2018
- Full Text
- View/download PDF
23. Impacts of physical parameterization on prediction of ethane concentrations for oil and gas emissions in WRF-Chem
- Author
-
M. Abdi-Oskouei, G. Pfister, F. Flocke, N. Sobhani, P. Saide, A. Fried, D. Richter, P. Weibring, J. Walega, and G. Carmichael
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Recent increases in natural gas (NG) production through hydraulic fracturing have called the climate benefit of switching from coal-fired to natural gas-fired power plants into question. Higher than expected levels of methane, non-methane hydrocarbons (NMHC), and NOx have been observed in areas close to oil and NG operation facilities. Large uncertainties in the oil and NG operation emission inventories reduce the confidence level in the impact assessment of such activities on regional air quality and climate, as well as in the development of effective mitigation policies. In this work, we used ethane as the indicator of oil and NG emissions and explored the sensitivity of ethane to different physical parameterizations and simulation setups in the Weather Research and Forecasting with Chemistry (WRF-Chem) model using the US EPA National Emission Inventory (NEI-2011). We evaluated the impact of the following configurations and parameterizations on predicted ethane concentrations: planetary boundary layer (PBL) parameterizations, daily re-initialization of meteorological variables, meteorological initial and boundary conditions, and horizontal resolution. We assessed the uncertainties around oil and NG emissions using measurements from the FRAPPÉ and DISCOVER-AQ campaigns over the northern Front Range metropolitan area (NFRMA) in summer 2014. The sensitivity analysis shows up to 57.3 % variability in the normalized mean bias of the near-surface modeled ethane across the simulations, which highlights the important role of model configurations on the model performance and ultimately the assessment of emissions. Comparison between airborne measurements and the sensitivity simulations indicates that the model–measurement bias of ethane ranged from −14.9 to −8.2 ppb (NMB ranged from −80.5 % to −44 %) in regions close to oil and NG activities. Underprediction of ethane concentration in all sensitivity runs suggests an actual underestimation of the oil and NG emissions in the NEI-2011. An increase of oil and NG emissions in the simulations partially improved the model performance in capturing ethane and lumped alkanes (HC3) concentrations but did not impact the model performance in capturing benzene, toluene, and xylene; this is due to very low emission rates of the latter species from the oil and NG sector in NEI-2011.
- Published
- 2018
- Full Text
- View/download PDF
24. Sources and characteristics of summertime organic aerosol in the Colorado Front Range: perspective from measurements and WRF-Chem modeling
- Author
-
R. Bahreini, R. Ahmadov, S. A. McKeen, K. T. Vu, J. H. Dingle, E. C. Apel, D. R. Blake, N. Blake, T. L. Campos, C. Cantrell, F. Flocke, A. Fried, J. B. Gilman, A. J. Hills, R. S. Hornbrook, G. Huey, L. Kaser, B. M. Lerner, R. L. Mauldin, S. Meinardi, D. D. Montzka, D. Richter, J. R. Schroeder, M. Stell, D. Tanner, J. Walega, P. Weibring, and A. Weinheimer
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
The evolution of organic aerosols (OAs) and their precursors in the boundary layer (BL) of the Colorado Front Range during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ, July–August 2014) was analyzed by in situ measurements and chemical transport modeling. Measurements indicated significant production of secondary OA (SOA), with enhancement ratio of OA with respect to carbon monoxide (CO) reaching 0.085±0.003 µg m−3 ppbv−1. At background mixing ratios of CO, up to ∼ 1.8 µg m−3 background OA was observed, suggesting significant non-combustion contribution to OA in the Front Range. The mean concentration of OA in plumes with a high influence of oil and natural gas (O&G) emissions was ∼ 40 % higher than in urban-influenced plumes. Positive matrix factorization (PMF) confirmed a dominant contribution of secondary, oxygenated OA (OOA) in the boundary layer instead of fresh, hydrocarbon-like OA (HOA). Combinations of primary OA (POA) volatility assumptions, aging of semi-volatile species, and different emission estimates from the O&G sector were used in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) simulation scenarios. The assumption of semi-volatile POA resulted in greater than a factor of 10 lower POA concentrations compared to PMF-resolved HOA. Including top-down modified O&G emissions resulted in substantially better agreements in modeled ethane, toluene, hydroxyl radical, and ozone compared to measurements in the high-O&G-influenced plumes. By including emissions from the O&G sector using the top-down approach, it was estimated that the O&G sector contributed to
- Published
- 2018
- Full Text
- View/download PDF
25. High-resolution inversion of OMI formaldehyde columns to quantify isoprene emission on ecosystem-relevant scales: application to the southeast US
- Author
-
J. Kaiser, D. J. Jacob, L. Zhu, K. R. Travis, J. A. Fisher, G. González Abad, L. Zhang, X. Zhang, A. Fried, J. D. Crounse, J. M. St. Clair, and A. Wisthaler
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Isoprene emissions from vegetation have a large effect on atmospheric chemistry and air quality. Bottom-up isoprene emission inventories used in atmospheric models are based on limited vegetation information and uncertain land cover data, leading to potentially large errors. Satellite observations of atmospheric formaldehyde (HCHO), a high-yield isoprene oxidation product, provide top-down information to evaluate isoprene emission inventories through inverse analyses. Past inverse analyses have however been hampered by uncertainty in the HCHO satellite data, uncertainty in the time- and NOx-dependent yield of HCHO from isoprene oxidation, and coarse resolution of the atmospheric models used for the inversion. Here we demonstrate the ability to use HCHO satellite data from OMI in a high-resolution inversion to constrain isoprene emissions on ecosystem-relevant scales. The inversion uses the adjoint of the GEOS-Chem chemical transport model at 0.25° × 0.3125° horizontal resolution to interpret observations over the southeast US in August–September 2013. It takes advantage of concurrent NASA SEAC4RS aircraft observations of isoprene and its oxidation products including HCHO to validate the OMI HCHO data over the region, test the GEOS-Chem isoprene oxidation mechanism and NOx environment, and independently evaluate the inversion. This evaluation shows in particular that local model errors in NOx concentrations propagate to biases in inferring isoprene emissions from HCHO data. It is thus essential to correct model NOx biases, which was done here using SEAC4RS observations but can be done more generally using satellite NO2 data concurrently with HCHO. We find in our inversion that isoprene emissions from the widely used MEGAN v2.1 inventory are biased high over the southeast US by 40 % on average, although the broad-scale distributions are correct including maximum emissions in Arkansas/Louisiana and high base emission factors in the oak-covered Ozarks of southeast Missouri. A particularly large discrepancy is in the Edwards Plateau of central Texas where MEGAN v2.1 is too high by a factor of 3, possibly reflecting errors in land cover. The lower isoprene emissions inferred from our inversion, when implemented into GEOS-Chem, decrease surface ozone over the southeast US by 1–3 ppb and decrease the isoprene contribution to organic aerosol from 40 to 20 %.
- Published
- 2018
- Full Text
- View/download PDF
26. Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States
- Author
-
J. Li, J. Mao, A. M. Fiore, R. C. Cohen, J. D. Crounse, A. P. Teng, P. O. Wennberg, B. H. Lee, F. D. Lopez-Hilfiker, J. A. Thornton, J. Peischl, I. B. Pollack, T. B. Ryerson, P. Veres, J. M. Roberts, J. A. Neuman, J. B. Nowak, G. M. Wolfe, T. F. Hanisco, A. Fried, H. B. Singh, J. Dibb, F. Paulot, and L. W. Horowitz
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Widespread efforts to abate ozone (O3) smog have significantly reduced emissions of nitrogen oxides (NOx) over the past 2 decades in the Southeast US, a place heavily influenced by both anthropogenic and biogenic emissions. How reactive nitrogen speciation responds to the reduction in NOx emissions in this region remains to be elucidated. Here we exploit aircraft measurements from ICARTT (July–August 2004), SENEX (June–July 2013), and SEAC4RS (August–September 2013) and long-term ground measurement networks alongside a global chemistry–climate model to examine decadal changes in summertime reactive oxidized nitrogen (RON) and ozone over the Southeast US. We show that our model can reproduce the mean vertical profiles of major RON species and the total (NOy) in both 2004 and 2013. Among the major RON species, nitric acid (HNO3) is dominant (∼ 42–45 %), followed by NOx (31 %), total peroxy nitrates (ΣPNs; 14 %), and total alkyl nitrates (ΣANs; 9–12 %) on a regional scale. We find that most RON species, including NOx, ΣPNs, and HNO3, decline proportionally with decreasing NOx emissions in this region, leading to a similar decline in NOy. This linear response might be in part due to the nearly constant summertime supply of biogenic VOC emissions in this region. Our model captures the observed relative change in RON and surface ozone from 2004 to 2013. Model sensitivity tests indicate that further reductions of NOx emissions will lead to a continued decline in surface ozone and less frequent high-ozone events.
- Published
- 2018
- Full Text
- View/download PDF
27. Role of convection in redistributing formaldehyde to the upper troposphere over North America and the North Atlantic during the summer 2004 INTEX campaign
- Author
-
Fried, Alan, Olson, Jennifer R, Walega, James G, Crawford, Jim H, Chen, Gao, Weibring, Petter, Richter, Dirk, Roller, Chad, Tittel, Frank, Porter, Michael, Fuelberg, Henry, Halland, Jeremy, Bertram, Timothy H, Cohen, Ronald C, Pickering, Kenneth, Heikes, Brian G, Snow, Julie A, Shen, Haiwei, O'Sullivan, Daniel W, Brune, William H, Ren, Xinrong, Blake, Donald R, Blake, Nicola, Sachse, Glen, Diskin, Glenn S, Podolske, James, Vay, Stephanie A, Shetter, Richard E, Hall, Samuel R, Anderson, Bruce E, Thornhill, Lee, Clarke, Antony D, McNaughton, Cameron S, Singh, Hanwant B, Avery, Melody A, Huey, Gregory, Kim, Saewung, and Millet, Dylan B
- Subjects
tropical upper troposphere ,united-states ,hox ,chemistry ,trace ,peroxides ,injection ,nashville ,radicals ,impact - Abstract
Measurements of formaldehyde (CH2O) from a tunable diode laser absorption spectrometer (TDLAS) were acquired onboard the NASA DC-8 aircraft during the summer 2004 INTEX-NA campaign to test our understanding of convection and CH2O production mechanisms in the upper troposphere (UT, 6–12 km) over continental North America and the North Atlantic Ocean. The present study utilizes these TDLAS measurements and results from a box model to (1) establish sets of conditions by which to distinguish “background” UT CH2O levels from those perturbed by convection and other causes; (2) quantify the CH2O precursor budgets for both air mass types; (3) quantify the fraction of time that the UT CH2O measurements over North America and North Atlantic are perturbed during the summer of 2004; (4) provide estimates for the fraction of time that such perturbed CH2O levels are caused by direct convection of boundary layer CH2O and/or convection of CH2O precursors; (5) assess the ability of box models to reproduce the CH2O measurements; and (6) examine CH2O and HO2 relationships in the presence of enhanced NO. Multiple tracers were used to arrive at a set of UT CH2O background and perturbed air mass periods, and 46% of the TDLAS measurements fell within the latter category. In general, production of CH2O from CH4 was found to be the dominant source term, even in perturbed air masses. This was followed by production from methyl hydroperoxide, methanol, PAN-type compounds, and ketones, in descending order of their contribution. At least 70% to 73% of the elevated UT observations were caused by enhanced production from CH2O precursors rather than direct transport of CH2O from the boundary layer. In the presence of elevated NO, there was a definite trend in the CH2O measurement–model discrepancy, and this was highly correlated with HO2 measurement–model discrepancies in the UT.
- Published
- 2008
28. Higher measured than modeled ozone production at increased NOx levels in the Colorado Front Range
- Author
-
B. C. Baier, W. H. Brune, D. O. Miller, D. Blake, R. Long, A. Wisthaler, C. Cantrell, A. Fried, B. Heikes, S. Brown, E. McDuffie, F. Flocke, E. Apel, L. Kaser, and A. Weinheimer
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Chemical models must correctly calculate the ozone formation rate, P(O3), to accurately predict ozone levels and to test mitigation strategies. However, air quality models can have large uncertainties in P(O3) calculations, which can create uncertainties in ozone forecasts, especially during the summertime when P(O3) is high. One way to test mechanisms is to compare modeled P(O3) to direct measurements. During summer 2014, the Measurement of Ozone Production Sensor (MOPS) directly measured net P(O3) in Golden, CO, approximately 25 km west of Denver along the Colorado Front Range. Net P(O3) was compared to rates calculated by a photochemical box model that was constrained by measurements of other chemical species and that used a lumped chemical mechanism and a more explicit one. Median observed P(O3) was up to a factor of 2 higher than that modeled during early morning hours when nitric oxide (NO) levels were high and was similar to modeled P(O3) for the rest of the day. While all interferences and offsets in this new method are not fully understood, simulations of these possible uncertainties cannot explain the observed P(O3) behavior. Modeled and measured P(O3) and peroxy radical (HO2 and RO2) discrepancies observed here are similar to those presented in prior studies. While a missing atmospheric organic peroxy radical source from volatile organic compounds co-emitted with NO could be one plausible solution to the P(O3) discrepancy, such a source has not been identified and does not fully explain the peroxy radical model–data mismatch. If the MOPS accurately depicts atmospheric P(O3), then these results would imply that P(O3) in Golden, CO, would be NOx-sensitive for more of the day than what is calculated by models, extending the NOx-sensitive P(O3) regime from the afternoon further into the morning. These results could affect ozone reduction strategies for the region surrounding Golden and possibly other areas that do not comply with national ozone regulations. Thus, it is important to continue the development of this direct ozone measurement technique to understand P(O3), especially under high-NOx regimes.
- Published
- 2017
- Full Text
- View/download PDF
29. Can Modern Educational Technology Replace the Teacher in the Classroom?
- Author
-
Fried, Vojtech and Goldberg, David E.
- Abstract
Discusses the role of the teacher in modern education and the use of innovations of educational technology to solve educational problems. (SL)
- Published
- 1978
30. Observing atmospheric formaldehyde (HCHO) from space: validation and intercomparison of six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC4RS aircraft observations over the southeast US
- Author
-
L. Zhu, D. J. Jacob, P. S. Kim, J. A. Fisher, K. Yu, K. R. Travis, L. J. Mickley, R. M. Yantosca, M. P. Sulprizio, I. De Smedt, G. González Abad, K. Chance, C. Li, R. Ferrare, A. Fried, J. W. Hair, T. F. Hanisco, D. Richter, A. Jo Scarino, J. Walega, P. Weibring, and G. M. Wolfe
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Formaldehyde (HCHO) column data from satellites are widely used as a proxy for emissions of volatile organic compounds (VOCs), but validation of the data has been extremely limited. Here we use highly accurate HCHO aircraft observations from the NASA SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) campaign over the southeast US in August–September 2013 to validate and intercompare six retrievals of HCHO columns from four different satellite instruments (OMI, GOME2A, GOME2B and OMPS; for clarification of these and other abbreviations used in the paper, please refer to Appendix A) and three different research groups. The GEOS-Chem chemical transport model is used as a common intercomparison platform. All retrievals feature a HCHO maximum over Arkansas and Louisiana, consistent with the aircraft observations and reflecting high emissions of biogenic isoprene. The retrievals are also interconsistent in their spatial variability over the southeast US (r = 0.4–0.8 on a 0.5° × 0.5° grid) and in their day-to-day variability (r = 0.5–0.8). However, all retrievals are biased low in the mean by 20–51 %, which would lead to corresponding bias in estimates of isoprene emissions from the satellite data. The smallest bias is for OMI-BIRA, which has high corrected slant columns relative to the other retrievals and low scattering weights in its air mass factor (AMF) calculation. OMI-BIRA has systematic error in its assumed vertical HCHO shape profiles for the AMF calculation, and correcting this would eliminate its bias relative to the SEAC4RS data. Our results support the use of satellite HCHO data as a quantitative proxy for isoprene emission after correction of the low mean bias. There is no evident pattern in the bias, suggesting that a uniform correction factor may be applied to the data until better understanding is achieved.
- Published
- 2016
- Full Text
- View/download PDF
31. Aerosol optical extinction during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) 2014 summertime field campaign, Colorado, USA
- Author
-
J. H. Dingle, K. Vu, R. Bahreini, E. C. Apel, T. L. Campos, F. Flocke, A. Fried, S. Herndon, A. J. Hills, R. S. Hornbrook, G. Huey, L. Kaser, D. D. Montzka, J. B. Nowak, M. Reeves, D. Richter, J. R. Roscioli, S. Shertz, M. Stell, D. Tanner, G. Tyndall, J. Walega, P. Weibring, and A. Weinheimer
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Summertime aerosol optical extinction (βext) was measured in the Colorado Front Range and Denver metropolitan area as part of the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) campaign during July–August 2014. An Aerodyne cavity attenuated phase shift particle light extinction monitor (CAPS-PMex) was deployed to measure βext (at average relative humidity of 20 ± 7 %) of submicron aerosols at λ = 632 nm at 1 Hz. Data from a suite of gas-phase instrumentation were used to interpret βext behavior in various categories of air masses and sources. Extinction enhancement ratios relative to CO (Δβext ∕ ΔCO) were higher in aged urban air masses compared to fresh air masses by ∼ 50 %. The resulting increase in Δβext ∕ ΔCO for highly aged air masses was accompanied by formation of secondary organic aerosols (SOAs). In addition, the impacts of aerosol composition on βext in air masses under the influence of urban, natural oil and gas operations (O&G), and agriculture and livestock operations were evaluated. Estimated non-refractory mass extinction efficiency (MEE) values for different air mass types ranged from 1.51 to 2.27 m2 g−1, with the minimum and maximum values observed in urban and agriculture-influenced air masses, respectively. The mass distribution for organic, nitrate, and sulfate aerosols presented distinct profiles in different air mass types. During 11–12 August, regional influence of a biomass burning event was observed, increasing the background βext and estimated MEE values in the Front Range.
- Published
- 2016
- Full Text
- View/download PDF
32. Impacts of the Denver Cyclone on regional air quality and aerosol formation in the Colorado Front Range during FRAPPÉ 2014
- Author
-
K. T. Vu, J. H. Dingle, R. Bahreini, P. J. Reddy, E. C. Apel, T. L. Campos, J. P. DiGangi, G. S. Diskin, A. Fried, S. C. Herndon, A. J. Hills, R. S. Hornbrook, G. Huey, L. Kaser, D. D. Montzka, J. B. Nowak, S. E. Pusede, D. Richter, J. R. Roscioli, G. W. Sachse, S. Shertz, M. Stell, D. Tanner, G. S. Tyndall, J. Walega, P. Weibring, A. J. Weinheimer, G. Pfister, and F. Flocke
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
We present airborne measurements made during the 2014 Front Range Air Pollution and Photochemistry Experiment (FRAPPÉ) project to investigate the impacts of the Denver Cyclone on regional air quality in the greater Denver area. Data on trace gases, non-refractory submicron aerosol chemical constituents, and aerosol optical extinction (βext) at λ = 632 nm were evaluated in the presence and absence of the surface mesoscale circulation in three distinct study regions of the Front Range: In-Flow, Northern Front Range, and the Denver metropolitan area. Pronounced increases in mass concentrations of organics, nitrate, and sulfate in the Northern Front Range and the Denver metropolitan area were observed during the cyclone episodes (27–28 July) compared to the non-cyclonic days (26 July, 2–3 August). Organic aerosols dominated the mass concentrations on all evaluated days, with a 45 % increase in organics on cyclone days across all three regions, while the increase during the cyclone episode was up to ∼ 80 % over the Denver metropolitan area. In the most aged air masses (NOx / NOy βext displayed strong correlations (r = 0.71) with organic and nitrate in the Northern Front Range and only with organics (r = 0.70) in the Denver metropolitan area, while correlation of βext during the cyclone was strongest (r = 0.86) with nitrate over Denver. Mass extinction efficiency (MEE) values in the Denver metropolitan area were similar on cyclone and non-cyclone days despite the dominant influence of different aerosol species on βext. Our analysis showed that the meteorological patterns associated with the Denver Cyclone increased aerosol mass loadings in the Denver metropolitan area mainly by transporting aerosols and/or aerosol precursors from the northern regions, leading to impaired visibility and air quality deterioration.
- Published
- 2016
- Full Text
- View/download PDF
33. Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions
- Author
-
K. Yu, D. J. Jacob, J. A. Fisher, P. S. Kim, E. A. Marais, C. C. Miller, K. R. Travis, L. Zhu, R. M. Yantosca, M. P. Sulprizio, R. C. Cohen, J. E. Dibb, A. Fried, T. Mikoviny, T. B. Ryerson, P. O. Wennberg, and A. Wisthaler
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Formation of ozone and organic aerosol in continental atmospheres depends on whether isoprene emitted by vegetation is oxidized by the high-NOx pathway (where peroxy radicals react with NO) or by low-NOx pathways (where peroxy radicals react by alternate channels, mostly with HO2). We used mixed layer observations from the SEAC4RS aircraft campaign over the Southeast US to test the ability of the GEOS-Chem chemical transport model at different grid resolutions (0.25° × 0.3125°, 2° × 2.5°, 4° × 5°) to simulate this chemistry under high-isoprene, variable-NOx conditions. Observations of isoprene and NOx over the Southeast US show a negative correlation, reflecting the spatial segregation of emissions; this negative correlation is captured in the model at 0.25° × 0.3125° resolution but not at coarser resolutions. As a result, less isoprene oxidation takes place by the high-NOx pathway in the model at 0.25° × 0.3125° resolution (54 %) than at coarser resolution (59 %). The cumulative probability distribution functions (CDFs) of NOx, isoprene, and ozone concentrations show little difference across model resolutions and good agreement with observations, while formaldehyde is overestimated at coarse resolution because excessive isoprene oxidation takes place by the high-NOx pathway with high formaldehyde yield. The good agreement of simulated and observed concentration variances implies that smaller-scale non-linearities (urban and power plant plumes) are not important on the regional scale. Correlations of simulated vs. observed concentrations do not improve with grid resolution because finer modes of variability are intrinsically more difficult to capture. Higher model resolution leads to decreased conversion of NOx to organic nitrates and increased conversion to nitric acid, with total reactive nitrogen oxides (NOy) changing little across model resolutions. Model concentrations in the lower free troposphere are also insensitive to grid resolution. The overall low sensitivity of modeled concentrations to grid resolution implies that coarse resolution is adequate when modeling continental boundary layer chemistry for global applications.
- Published
- 2016
- Full Text
- View/download PDF
34. In situ measurements and modeling of reactive trace gases in a small biomass burning plume
- Author
-
M. Müller, B. E. Anderson, A. J. Beyersdorf, J. H. Crawford, G. S. Diskin, P. Eichler, A. Fried, F. N. Keutsch, T. Mikoviny, K. L. Thornhill, J. G. Walega, A. J. Weinheimer, M. Yang, R. J. Yokelson, and A. Wisthaler
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
An instrumented NASA P-3B aircraft was used for airborne sampling of trace gases in a plume that had emanated from a small forest understory fire in Georgia, USA. The plume was sampled at its origin to derive emission factors and followed ∼ 13.6 km downwind to observe chemical changes during the first hour of atmospheric aging. The P-3B payload included a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), which measured non-methane organic gases (NMOGs) at unprecedented spatiotemporal resolution (10 m spatial/0.1 s temporal). Quantitative emission data are reported for CO2, CO, NO, NO2, HONO, NH3, and 16 NMOGs (formaldehyde, methanol, acetonitrile, propene, acetaldehyde, formic acid, acetone plus its isomer propanal, acetic acid plus its isomer glycolaldehyde, furan, isoprene plus isomeric pentadienes and cyclopentene, methyl vinyl ketone plus its isomers crotonaldehyde and methacrolein, methylglyoxal, hydroxy acetone plus its isomers methyl acetate and propionic acid, benzene, 2,3-butanedione, and 2-furfural) with molar emission ratios relative to CO larger than 1 ppbV ppmV−1. Formaldehyde, acetaldehyde, 2-furfural, and methanol dominated NMOG emissions. No NMOGs with more than 10 carbon atoms were observed at mixing ratios larger than 50 pptV ppmV−1 CO. Downwind plume chemistry was investigated using the observations and a 0-D photochemical box model simulation. The model was run on a nearly explicit chemical mechanism (MCM v3.3) and initialized with measured emission data. Ozone formation during the first hour of atmospheric aging was well captured by the model, with carbonyls (formaldehyde, acetaldehyde, 2,3-butanedione, methylglyoxal, 2-furfural) in addition to CO and CH4 being the main drivers of peroxy radical chemistry. The model also accurately reproduced the sequestration of NOx into peroxyacetyl nitrate (PAN) and the OH-initiated degradation of furan and 2-furfural at an average OH concentration of 7.45 ± 1.07 × 106 cm−3 in the plume. Formaldehyde, acetone/propanal, acetic acid/glycolaldehyde, and maleic acid/maleic anhydride (tentatively identified) were found to be the main NMOGs to increase during 1 h of atmospheric plume processing, with the model being unable to capture the observed increase. A mass balance analysis suggests that about 50 % of the aerosol mass formed in the downwind plume is organic in nature.
- Published
- 2016
- Full Text
- View/download PDF
35. On the effectiveness of nitrogen oxide reductions as a control over ammonium nitrate aerosol
- Author
-
S. E. Pusede, K. C. Duffey, A. A. Shusterman, A. Saleh, J. L. Laughner, P. J. Wooldridge, Q. Zhang, C. L. Parworth, H. Kim, S. L. Capps, L. C. Valin, C. D. Cappa, A. Fried, J. Walega, J. B. Nowak, A. J. Weinheimer, R. M. Hoff, T. A. Berkoff, A. J. Beyersdorf, J. Olson, J. H. Crawford, and R. C. Cohen
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Nitrogen oxides (NOx) have fallen steadily across the US over the last 15 years. At the same time, NOx concentrations decrease on weekends relative to weekdays, largely without co-occurring changes in other gas-phase emissions, due to patterns of diesel truck activities. These trends taken together provide two independent constraints on the role of NOx in the nonlinear chemistry of atmospheric oxidation. In this context, we interpret interannual trends in wintertime ammonium nitrate (NH4NO3) in the San Joaquin Valley of California, a location with the worst aerosol pollution in the US and where a large portion of aerosol mass is NH4NO3. Here, we show that NOx reductions have simultaneously decreased nighttime and increased daytime NH4NO3 production over the last decade. We find a substantial decrease in NH4NO3 since 2000 and conclude that this decrease is due to reduced nitrate radical-initiated production at night in residual layers that are decoupled from fresh emissions at the surface. Further reductions in NOx are imminent in California, and nationwide, and we make a quantitative prediction of the response of NH4NO3. We show that the combination of rapid chemical production and efficient NH4NO3 loss via deposition of gas-phase nitric acid implies that high aerosol days in cities in the San Joaquin Valley air basin are responsive to local changes in NOx within those individual cities. Our calculations indicate that large decreases in NOx in the future will not only lower wintertime NH4NO3 concentrations but also cause a transition in the dominant NH4NO3 source from nighttime to daytime chemistry.
- Published
- 2016
- Full Text
- View/download PDF
36. A Demonstration of Enzyme Activity for the 'Sceptical Chymist'
- Author
-
Fried, Rainer and Howse, Margaret
- Published
- 1971
37. The NOx dependence of bromine chemistry in the Arctic atmospheric boundary layer
- Author
-
K. D. Custard, C. R. Thompson, K. A. Pratt, P B. Shepson, J. Liao, L. G. Huey, J. J. Orlando, A. J. Weinheimer, E. Apel, S. R. Hall, F. Flocke, L. Mauldin, R. S. Hornbrook, D. Pöhler, S. General, J. Zielcke, W. R. Simpson, U. Platt, A. Fried, P. Weibring, B. C. Sive, K. Ullmann, C. Cantrell, D. J. Knapp, and D. D. Montzka
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Arctic boundary layer nitrogen oxides (NOx = NO2 + NO) are naturally produced in and released from the sunlit snowpack and range between 10 to 100 pptv in the remote background surface layer air. These nitrogen oxides have significant effects on the partitioning and cycling of reactive radicals such as halogens and HOx (OH + HO2). However, little is known about the impacts of local anthropogenic NOx emission sources on gas-phase halogen chemistry in the Arctic, and this is important because these emissions can induce large variability in ambient NOx and thus local chemistry. In this study, a zero-dimensional photochemical kinetics model was used to investigate the influence of NOx on the unique springtime halogen and HOx chemistry in the Arctic. Trace gas measurements obtained during the 2009 OASIS (Ocean – Atmosphere – Sea Ice – Snowpack) field campaign at Barrow, AK were used to constrain many model inputs. We find that elevated NOx significantly impedes gas-phase halogen radical-based depletion of ozone, through the production of a variety of reservoir species, including HNO3, HO2NO2, peroxyacetyl nitrate (PAN), BrNO2, ClNO2 and reductions in BrO and HOBr. The effective removal of BrO by anthropogenic NOx was directly observed from measurements conducted near Prudhoe Bay, AK during the 2012 Bromine, Ozone, and Mercury Experiment (BROMEX). Thus, while changes in snow-covered sea ice attributable to climate change may alter the availability of molecular halogens for ozone and Hg depletion, predicting the impact of climate change on polar atmospheric chemistry is complex and must take into account the simultaneous impact of changes in the distribution and intensity of anthropogenic combustion sources. This is especially true for the Arctic, where NOx emissions are expected to increase because of increasing oil and gas extraction and shipping activities.
- Published
- 2015
- Full Text
- View/download PDF
38. Interactions of bromine, chlorine, and iodine photochemistry during ozone depletions in Barrow, Alaska
- Author
-
C. R. Thompson, P. B. Shepson, J. Liao, L. G. Huey, E. C. Apel, C. A. Cantrell, F. Flocke, J. Orlando, A. Fried, S. R. Hall, R. S. Hornbrook, D. J. Knapp, R. L. Mauldin III, D. D. Montzka, B. C. Sive, K. Ullmann, P. Weibring, and A. Weinheimer
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
The springtime depletion of tropospheric ozone in the Arctic is known to be caused by active halogen photochemistry resulting from halogen atom precursors emitted from snow, ice, or aerosol surfaces. The role of bromine in driving ozone depletion events (ODEs) has been generally accepted, but much less is known about the role of chlorine radicals in ozone depletion chemistry. While the potential impact of iodine in the High Arctic is more uncertain, there have been indications of active iodine chemistry through observed enhancements in filterable iodide, probable detection of tropospheric IO, and recently, observation of snowpack photochemical production of I2. Despite decades of research, significant uncertainty remains regarding the chemical mechanisms associated with the bromine-catalyzed depletion of ozone, as well as the complex interactions that occur in the polar boundary layer due to halogen chemistry. To investigate this, we developed a zero-dimensional photochemical model, constrained with measurements from the 2009 OASIS field campaign in Barrow, Alaska. We simulated a 7-day period during late March that included a full ozone depletion event lasting 3 days and subsequent ozone recovery to study the interactions of halogen radicals under these different conditions. In addition, the effects of iodine added to our Base Model were investigated. While bromine atoms were primarily responsible for ODEs, chlorine and iodine were found to enhance the depletion rates and iodine was found to be more efficient per atom at depleting ozone than Br. The interaction between chlorine and bromine is complex, as the presence of chlorine can increase the recycling and production of Br atoms, while also increasing reactive bromine sinks under certain conditions. Chlorine chemistry was also found to have significant impacts on both HO2 and RO2, with organic compounds serving as the primary reaction partner for Cl atoms. The results of this work highlight the need for future studies on the production mechanisms of Br2 and Cl2, as well as on the potential impact of iodine in the High Arctic.
- Published
- 2015
- Full Text
- View/download PDF
39. The POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations
- Author
-
L. K. Emmons, S. R. Arnold, S. A. Monks, V. Huijnen, S. Tilmes, K. S. Law, J. L. Thomas, J.-C. Raut, I. Bouarar, S. Turquety, Y. Long, B. Duncan, S. Steenrod, S. Strode, J. Flemming, J. Mao, J. Langner, A. M. Thompson, D. Tarasick, E. C. Apel, D. R. Blake, R. C. Cohen, J. Dibb, G. S. Diskin, A. Fried, S. R. Hall, L. G. Huey, A. J. Weinheimer, A. Wisthaler, T. Mikoviny, J. Nowak, J. Peischl, J. M. Roberts, T. Ryerson, C. Warneke, and D. Helmig
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
A model intercomparison activity was inspired by the large suite of observations of atmospheric composition made during the International Polar Year (2008) in the Arctic. Nine global and two regional chemical transport models participated in this intercomparison and performed simulations for 2008 using a common emissions inventory to assess the differences in model chemistry and transport schemes. This paper summarizes the models and compares their simulations of ozone and its precursors and presents an evaluation of the simulations using a variety of surface, balloon, aircraft and satellite observations. Each type of measurement has some limitations in spatial or temporal coverage or in composition, but together they assist in quantifying the limitations of the models in the Arctic and surrounding regions. Despite using the same emissions, large differences are seen among the models. The cloud fields and photolysis rates are shown to vary greatly among the models, indicating one source of the differences in the simulated chemical species. The largest differences among models, and between models and observations, are in NOy partitioning (PAN vs. HNO3) and in oxygenated volatile organic compounds (VOCs) such as acetaldehyde and acetone. Comparisons to surface site measurements of ethane and propane indicate that the emissions of these species are significantly underestimated. Satellite observations of NO2 from the OMI (Ozone Monitoring Instrument) have been used to evaluate the models over source regions, indicating anthropogenic emissions are underestimated in East Asia, but fire emissions are generally overestimated. The emission factors for wildfires in Canada are evaluated using the correlations of VOCs to CO in the model output in comparison to enhancement factors derived from aircraft observations, showing reasonable agreement for methanol and acetaldehyde but underestimate ethanol, propane and acetone, while overestimating ethane emission factors.
- Published
- 2015
- Full Text
- View/download PDF
40. An Invariant Protein That Colocalizes With VAR2CSA on Plasmodium falciparum-Infected Red Cells Binds to Chondroitin Sulfate A
- Author
-
Harold Obiakor, Shaji Daniel, Justin Doritchamou, Andrew V. Oleinikov, Tracy Saveria, Robert Morrison, Nicholas J. MacDonald, Bethany J Jenkins, Gladys J. Keitany, David L. Narum, Atis Muehlenbachs, Sanjay A. Desai, Jean-Philippe Semblat, Marissa Vignali, Benoit Gamain, Michal Fried, and Patrick E. Duffy
- Subjects
Erythrocytes ,Placenta ,Plasmodium falciparum ,Antibodies, Protozoan ,Antigens, Protozoan ,Chondroitin sulfate A ,law.invention ,Major Articles and Brief Reports ,Pregnancy ,law ,Malaria Vaccines ,parasitic diseases ,Humans ,Immunology and Allergy ,Malaria, Falciparum ,Plasmodium (life cycle) ,biology ,Chemistry ,Chondroitin Sulfates ,Ligand (biochemistry) ,biology.organism_classification ,Malaria ,Cell biology ,Transmembrane domain ,Infectious Diseases ,embryonic structures ,Recombinant DNA ,Female ,Function (biology) - Abstract
Background Plasmodium falciparum-infected red blood cells (iRBCs) bind and sequester in deep vascular beds, causing malaria-related disease and death. In pregnant women, VAR2CSA binds to chondroitin sulfate A (CSA) and mediates placental sequestration, making it the major placental malaria (PM) vaccine target. Methods In this study, we characterize an invariant protein associated with PM called P falciparum chondroitin sulfate A ligand (PfCSA-L). Results Recombinant PfCSA-L binds both placental CSA and VAR2CSA with nanomolar affinity, and it is coexpressed on the iRBC surface with VAR2CSA. Unlike VAR2CSA, which is anchored by a transmembrane domain, PfCSA-L is peripherally associated with the outer surface of knobs through high-affinity protein-protein interactions with VAR2CSA. This suggests that iRBC sequestration involves complexes of invariant and variant surface proteins, allowing parasites to maintain both diversity and function at the iRBC surface. Conclusions The PfCSA-L is a promising target for intervention because it is well conserved, exposed on infected cells, and expressed and localized with VAR2CSA.
- Published
- 2021
- Full Text
- View/download PDF
41. Linkage of resistance-associated substitutions in GT1 sofosbuvir + NS5A inhibitor failures treated with glecaprevir/pibrentasvir
- Author
-
Joy Peter, Larry Michael, Rakesh Tripathi, Gurjit S. Sidhu, Ryan Tamashiro, Lois Larsen, Gary P. Wang, Jens Kort, David R. Nelson, Gretja Schnell, Joan A. Whitlock, Michael W. Fried, Layla Schuster, Ken Bergquist, Chandni B. Patel, and Ashley Magee
- Subjects
Adult ,Male ,0301 basic medicine ,medicine.medical_specialty ,Pyrrolidines ,Cirrhosis ,Sofosbuvir ,viruses ,Drug Resistance ,Viral Nonstructural Proteins ,Antiviral Agents ,Gastroenterology ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Quinoxalines ,Internal medicine ,medicine ,Humans ,Longitudinal Studies ,NS5A ,Sulfonamides ,Hepatology ,business.industry ,Ribavirin ,virus diseases ,Glecaprevir ,Middle Aged ,biochemical phenomena, metabolism, and nutrition ,RNA-Dependent RNA Polymerase ,medicine.disease ,Hepatitis C ,United States ,digestive system diseases ,Pibrentasvir ,Clinical trial ,Drug Combinations ,Regimen ,030104 developmental biology ,chemistry ,Benzimidazoles ,Female ,030211 gastroenterology & hepatology ,business ,medicine.drug - Abstract
Background & Aims Retreatment with glecaprevir/pibrentasvir (G/P) resulted in a rate of sustained virologic response 12 weeks after treatment completion (SVR12) of >90% in HCV genotype 1 (GT1) patients who previously failed a regimen of sofosbuvir plus an NS5A inhibitor (NS5Ai). This study investigated the prevalence and impact of baseline NS3 and NS5A resistance-associated substitutions (RASs) on the efficacy of G/P in prior GT1 sofosbuvir+NS5Ai failures and the persistence of treatment-emergent RASs. Methods Longitudinal samples from 177 patients enrolled in a phase IIIb, randomized pragmatic clinical trial were analyzed. Patients without cirrhosis were randomized to 12 or 16 weeks of G/P, and patients with compensated cirrhosis were randomized to G/P and ribavirin for 12 weeks or G/P for 16 weeks. Linkage of RAS was identified using Primer-ID next-generation sequencing at a 15% cut-off. Results Of 177 patients, 169 (95.5%) were PI-naive. All 33 GT1b-infected patients achieved SVR12. In GT1a-infected patients, baseline NS5A RASs were prevalent (74.5%, 105/141) but NS3 RASs were uncommon. Baseline NS3 RASs had no impact on G/P efficacy and patients with baseline NS5A RASs showed a numerically but not statistically significantly lower SVR12 rate compared to those without NS5A RASs (89% vs. 97%). SVR12 was achieved in 34 of 35 (97%) patients without NS5A baseline substitution, and 53 of 57 (93%), 35 of 40 (88%), 5 of 8 (63%) with single, double-linked, and triple-linked NS5A substitutions, respectively. Among 13 patients with virologic failure, 4 acquired treatment-emergent NS3 RASs and 10 acquired NS5A RASs. Conclusion Baseline NS5A RASs were highly prevalent. The presence of an increasing number of linked NS5A RASs in GT1a showed a trend in decreasing SVR12 rates, although no specific NS5A RASs or their linkage pattern were associated with lower SVR12 rates. Lay summary Direct-acting antivirals have revolutionized the treatment of chronic hepatitis C infection, but treatment failure occurs in some patients. Retreatment of patients who previously failed a regimen consisting of sofosbuvir and an NS5A inhibitor with a regimen of glecaprevir and pibrentasvir (G/P) is >90% effective. Herein, we analyzed samples from these patients and showed that retreatment efficacy with G/P is lower in patients with double- or triple-linked NS5A resistance mutations than in patients with single or no NS5A resistance mutations. Clinical trial number NCT03092375 .
- Published
- 2021
- Full Text
- View/download PDF
42. Optimized Loopable Translation as a Platform for the Synthesis of Repetitive Proteins
- Author
-
Stephen D. Fried, Sea On Lee, and Qi Xie
- Subjects
Messenger RNA ,Translational efficiency ,Chemistry ,General Chemical Engineering ,Mutant ,Intron ,Translation (biology) ,General Chemistry ,Computational biology ,Ribosomal RNA ,Directed evolution ,law.invention ,law ,Recombinant DNA ,QD1-999 ,Research Article - Abstract
The expression of long proteins with repetitive amino acid sequences often presents a challenge in recombinant systems. To overcome this obstacle, we report a genetic construct that circularizes mRNA in vivo by rearranging the topology of a group I self-splicing intron from T4 bacteriophage, thereby enabling “loopable” translation. Using a fluorescence-based assay to probe the translational efficiency of circularized mRNAs, we identify several conditions that optimize protein expression from this system. Our data suggested that translation of circularized mRNAs could be limited primarily by the rate of ribosomal initiation; therefore, using a modified error-prone PCR method, we generated a library that concentrated mutations into the initiation region of circularized mRNA and discovered mutants that generated markedly higher expression levels. Combining our rational improvements with those discovered through directed evolution, we report a loopable translator that achieves protein expression levels within 1.5-fold of the levels of standard vectorial translation. In summary, our work demonstrates loopable translation as a promising platform for the creation of large peptide chains, with potential utility in the development of novel protein materials., A loopable translator enables long repetitive proteins to be efficiently synthesized in cells through a plug-and-play plasmid featuring a self-splicing intron in a permuted topology.
- Published
- 2021
43. Nonrefoldability is Pervasive Across the E. coli Proteome
- Author
-
Stephen D. Fried, Philip To, Briana Whitehead, and Haley E. Tarbox
- Subjects
Folding (chemistry) ,Colloid and Surface Chemistry ,Protein refolding ,Chemistry ,Proteome ,Protein folding ,General Chemistry ,Computational biology ,Proteomics ,Biochemistry ,Catalysis - Abstract
Decades of research on protein folding have primarily focused on a subset of small proteins that can reversibly refold from a denatured state. However, these studies have generally not been representative of the complexity of natural proteomes, which consist of many proteins with complex architectures and domain organizations. Here, we introduce an experimental approach to probe protein refolding kinetics for whole proteomes using mass spectrometry-based proteomics. Our study covers the majority of the soluble E. coli proteome expressed during log-phase growth, and among this group, we find that one-third of the E. coli proteome is not intrinsically refoldable on physiological time scales, a cohort that is enriched with certain fold-types, domain organizations, and other biophysical features. We also identify several properties and fold-types that are correlated with slow refolding on the minute time scale. Hence, these results illuminate when exogenous factors and processes, such as chaperones or cotranslational folding, might be required for efficient protein folding.
- Published
- 2021
- Full Text
- View/download PDF
44. Adherence to Chronic Kidney Disease Screening Guidelines Among Patients With Type 2 Diabetes in a US Administrative Claims Database
- Author
-
Kerstin Folkerts, Natalia Petruski-Ivleva, Erin Comerford, Michael Blankenburg, Thomas Evers, Alain Gay, Linda Fried, and Csaba P. Kovesdy
- Subjects
Male ,Renal function ,Type 2 diabetes ,computer.software_genre ,Cohort Studies ,chemistry.chemical_compound ,Diabetes mellitus ,medicine ,Humans ,Mass Screening ,Renal Insufficiency, Chronic ,Aged ,Aged, 80 and over ,Creatinine ,Type 1 diabetes ,Database ,business.industry ,General Medicine ,Middle Aged ,medicine.disease ,United States ,Diabetes Mellitus, Type 2 ,chemistry ,Albuminuria ,Female ,Guideline Adherence ,medicine.symptom ,business ,computer ,Kidney disease ,Cohort study - Abstract
Objective To examine the screening rates for kidney damage and function among patients with type 2 diabetes (T2D) and chronic kidney disease stage at diabetes diagnosis using a US administrative claims database. Patients and Methods This cohort study used a claims database enriched with laboratory results data. Patients with T2D (defined as 1 inpatient or 2 outpatient claims for diabetes), aged 18 years or older, and with at least 1 year of follow-up enrollment were identified. Patients with type 1 diabetes, kidney disease, or other related conditions at baseline were excluded. We estimated screening rates using laboratory orders for serum creatinine and estimated glomerular filtration rate (eGFR) measurement and urine albumin to creatinine ratio (UACR). Chronic kidney disease severity was reported using the Kidney Disease: Improving Global Outcomes classification based on laboratory results. Results A total of 1,881,447 patients with T2D were eligible for analysis. Mean ± SD age was 63.1±13.1 years; 947,150 patients (50.3%) were male. Serum creatinine tests were ordered within 14 days of the index date among 290,722 patients of 622,915 (46.7%) patients with newly-recognized T2D. Overall, 1,595,964 patients (84.8%) had at least one serum creatinine test ordered during the 1-year follow-up period. Fewer patients received a UACR test during follow-up (814,897 [43.3%]). Less than half of all patients with T2D received a laboratory test order for both serum creatinine and urine albumin measurements during the follow-up period. Conclusion Physicians treating patients with diabetes are selectively adhering to chronic kidney disease screening guidelines, as indicated by high rates of eGFR testing, but less frequent UACR testing. Despite recommendations to monitor both eGFR and UACR, less than half of patients were screened for albuminuria during the 1-year follow-up.
- Published
- 2021
- Full Text
- View/download PDF
45. 'If I Get Cured, My Whole Quality of Life Will Change': Patients’ Anticipated and Actualized Benefits Following Cure from Chronic Hepatitis C
- Author
-
Jessica Carda-Auten, Carol E. Golin, Donna M. Evon, Michael W. Fried, Hannah P. Kim, Bryce B. Reeve, and Angela Edwards
- Subjects
Male ,Ledipasvir ,medicine.medical_specialty ,Sofosbuvir ,Physiology ,Social Interaction ,Stigma (botany) ,Antiviral Agents ,Article ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Quality of life (healthcare) ,Disease Transmission, Infectious ,medicine ,Humans ,Disease Eradication ,Fluorenes ,Motivation ,business.industry ,Gastroenterology ,Hepatitis C ,Hepatitis C, Chronic ,Middle Aged ,Anticipation, Psychological ,medicine.disease ,Mental Health ,Treatment Outcome ,Mood ,chemistry ,030220 oncology & carcinogenesis ,Quality of Life ,Anxiety ,Benzimidazoles ,Female ,030211 gastroenterology & hepatology ,Outcomes research ,medicine.symptom ,business ,medicine.drug ,Clinical psychology - Abstract
BACKGROUND: Patients’ motivations for undergoing direct-acting antiviral (DAA) therapy for chronic hepatitis C may include anticipation of treatment benefits not well-described in the literature. AIMS: Evaluate patients’ anticipated and actualized improvements in several domains of functioning before and after viral cure. METHODS: Pre-post study utilizing in-depth interviews with 28 patients prior to, and several months after, DAA therapy. Interviews were audio-recorded, transcribed, coded and analyzed by two qualitative experts. RESULTS: Patients had a median age of 54 years, 43% were male, 57% white, 25% had cirrhosis, and 71% were treated with sofosbuvir/ledipasvir. Pre-treatment, patients hoped for improvements in several domains including psychological, emotional, physical, social and occupational functioning. After viral cure, increased energy and less fear of transmission were pathways to better quality of life. Psychological and emotional improvements positively affected physical, social and occupational functioning. Social improvements were due to better mood and motivation, fewer symptoms, and reduced fear of stigma and transmission. Occupational benefits were linked to increased stamina, self-confidence, and less pain, anxiety, and stigma. Reduced fear of stigma had a pervasive impact on all life improvements after cure. Patient characteristics such as presence of cirrhosis or psychiatric issues influence treatment motivations. Qualitative data correspond with change in pre-post survey scores. CONCLUSIONS: Tremendous hope is placed on the ability of DAA therapy to bring about substantial improvements in life functioning after viral cure. Highly interconnected effects on quality of life worked synergistically through improved physical and psychological well-being. Stakeholders should appreciate the multi-dimensional benefits that viral eradication bestows upon individuals and society.
- Published
- 2021
- Full Text
- View/download PDF
46. Health Beneficial Potential of Pectolinarigenin on Human Diseases: An Updated Review of Medicinal Importance and Pharmacological Activity
- Author
-
Nathania Dong Amelia, Steinberg Bruce, B. Salles João, Li Yingda, D. Badgaiyan Rajendra, Patel Kanika, Fried Lyle, Bendif Hamdi, Arnold-Apostolides Nelly, Blum Kenneth, Medjroubi Kamel, Baron David, P. Victório Cristiane, Zhang Xizhe, Hajela Raju, Boyett Brent, Chin Yiap Beow, Akkal Salah, Soufi Shahnaz, V. Ponce Jessica, M. Mustafa Ahmed, Souilah Nabila, Oakes Victoria, Mohamad Salim Ghaydaa, Djamel Miara Mohamed, Kumar Patel Dinesh, Eng Ong Chin, H. El-Dakdouki Mohammad, Bahl Dinesh, Pan Yan, Saeed Jamali Khawar, Antony Suresh, Ullah Zain, M. Kuster Ricardo, McLaughlin Thomas, Lott Lisa, Cristina de Assis Maria, M. Marques Fernanda, Siwicki David, Laib Messaoud, M. Nasser Hatem, F. Freitas Tauana, Hauser Mary, Hassanzad Azar Hassan, Zhou Qi, Kamali Koorosh, Aminzare Majid, Devi Palanisamy Uma, Fu Zhimei, J. Modestino Edward, Ghulam Musharraf Syed, Abdallah Hiba, Öztürk Mehmet, Siddiqui Sonia, Ahemad Nafees, W. Downs Bill, Khan Faisal, and Simpatico Thomas
- Subjects
chemistry.chemical_compound ,Pectolinarigenin ,Complementary and alternative medicine ,Traditional medicine ,chemistry ,Drug Discovery ,food and beverages - Abstract
Medicinal Plants are valuable source of phytochemicals which have been used in the medicine as source of raw material since very ancient time in the world. Flavonoids are one of the important classes of phytochemical basically present in the fruits, vegetables, grains, wine, tea etc. Flavonoids also play an important role in the defense mechanism of plants and produce different colours in the plants. Pectolinarigenin is a natural flavonoidal compound having molecular formula C17H14O6 and molecular weight 314.28. Pectolinarigenin is present in various plants and examples are Clerodendrum phlomidis, Eupatorium odoratum, Cirsium chanroenicum, Cirsium japonlcum, Chromolaena odorata, Cirsium setidens, and Trollius chinensis. Pectolinarigenin acts as an anticancer agent against various types of human malignancies, such as lung cancer, melanoma, hepatocellular carcinoma and colorectal adenocarcinoma. It has also anti-inflammatory, anti-allergy, cytotoxic and hepatoprotective properties. Pectolinarigenin gained attention from researchers and clinicians due to their anticancer properties and in future it could be the best choice for cancer treatment. The purpose of this review paper is to summarize all the pharmacological properties of pectolinarigenin on cancer and other disorders, describe the mode of action and possible pathways for cellular level action. The present review initially highlights the current status of flavonoids and their pharmaceutical importance, role of pectolinarigenin in human disorders, and in later section, summarizes analytical techniques of pectolinarigenin as lead molecules. This review will support all the ongoing research of pectolinarigenin through out world for their beneficial properties in all the scientific discipline.
- Published
- 2021
- Full Text
- View/download PDF
47. Atmospheric biogenic volatile organic compounds in the Alaskan Arctic tundra: constraints from measurements at Toolik Field Station
- Author
-
Vanessa Selimovic, Damien Ketcherside, Sreelekha Chaliyakunnel, Catherine Wielgasz, Wade Permar, Hélène Angot, Dylan B. Millet, Alan Fried, Detlev Helmig, and Lu Hu
- Subjects
oh reactivity measurements ,Atmospheric Science ,gas-phase reactions ,model ,photochemical data ,satellite ,boreal forest ,isoprene emissions ,chemistry ,mixing ratios ,formic-acid - Abstract
The Arctic is a climatically sensitive region that has experienced warming at almost 3 times the global average rate in recent decades, leading to an increase in Arctic greenness and a greater abundance of plants that emit biogenic volatile organic compounds (BVOCs). These changes in atmospheric emissions are expected to significantly modify the overall oxidative chemistry of the region and lead to changes in VOC composition and abundance, with implications for atmospheric processes. Nonetheless, observations needed to constrain our current understanding of these issues in this critical environment are sparse. This work presents novel atmospheric in situ proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) measurements of VOCs at Toolik Field Station (TFS; 68∘38′ N, 149∘36' W), in the Alaskan Arctic tundra during May–June 2019. We employ a custom nested grid version of the GEOS-Chem chemical transport model (CTM), driven with MEGANv2.1 (Model of Emissions of Gases and Aerosols from Nature version 2.1) biogenic emissions for Alaska at 0.25∘ × 0.3125∘ resolution, to interpret the observations in terms of their constraints on BVOC emissions, total reactive organic carbon (ROC) composition, and calculated OH reactivity (OHr) in this environment. We find total ambient mole fraction of 78 identified VOCs to be 6.3 ± 0.4 ppbv (10.8 ± 0.5 ppbC), with overwhelming (> 80 %) contributions are from short-chain oxygenated VOCs (OVOCs) including methanol, acetone and formaldehyde. Isoprene was the most abundant terpene identified. GEOS-Chem captures the observed isoprene (and its oxidation products), acetone and acetaldehyde abundances within the combined model and observation uncertainties (±25 %), but underestimates other OVOCs including methanol, formaldehyde, formic acid and acetic acid by a factor of 3 to 12. The negative model bias for methanol is attributed to underestimated biogenic methanol emissions for the Alaskan tundra in MEGANv2.1. Observed formaldehyde mole fractions increase exponentially with air temperature, likely reflecting its biogenic precursors and pointing to a systematic model underprediction of its secondary production. The median campaign-calculated OHr from VOCs measured at TFS was 0.7 s−1, roughly 5 % of the values typically reported in lower-latitude forested ecosystems. Ten species account for over 80 % of the calculated VOC OHr, with formaldehyde, isoprene and acetaldehyde together accounting for nearly half of the total. Simulated OHr based on median-modeled VOCs included in GEOS-Chem averages 0.5 s−1 and is dominated by isoprene (30 %) and monoterpenes (17 %). The data presented here serve as a critical evaluation of our knowledge of BVOCs and ROC budgets in high-latitude environments and represent a foundation for investigating and interpreting future warming-driven changes in VOC emissions in the Alaskan Arctic tundra.
- Published
- 2022
- Full Text
- View/download PDF
48. 100 REASONS to become a scientist or an engineer
- Author
-
Collins, Francis S., Blum, Arlene, Murphy, Brendan, Trut, Lyudmila, Shea, John J., Steingraber, Sandra, Marcy, Geoff, Zhang, Lixia, Makani, Julie, Nicolelis, Miguel, Sottos, Nancy R., Edwards, David, Fried, Limor, Seeley, Thomas D., Halas, Naomi J., Ahearne, John F., Porco, Carolyn, Chisholm, Sallie (Penny), Gimzewski, James K., Jackson, Shirley Ann, White, Tim, Leyser, Ottoline, Petroski, Henry, Schweitzer, Mary, and Alberts, Susan
- Published
- 2012
49. Block copolymer–nanodiamond coassembly in solution: towards multifunctional hybrid materials
- Author
-
Alessandro Giussani, Stoffel D. Janssens, Burhannudin Sutisna, Eliot Fried, and David Vázquez-Cortés
- Subjects
chemistry.chemical_classification ,Nanocomposite ,Materials science ,Nanostructure ,Biocompatibility ,Chemical engineering ,chemistry ,Dynamic light scattering ,Copolymer ,General Materials Science ,Polymer ,Nanodiamond ,Hybrid material - Abstract
Polymer-nanodiamond composites are excellent candidates for the fabrication of multifunctional hybrid materials. They integrate polymer flexibility and exceptional properties of nanodiamonds (NDs), such as biocompatibility, mechanical strength, color centers, and chemically-tailored surfaces. However, their development is hindered by the challenge of ensuring that NDs are homogeneously distributed in the composites. Here, we exploit colloidal coassembly between poly(isoprene-b-styrene-b-2-vinyl pyridine) (ISV) block copolymers (BCPs) and NDs to avoid ND self-agglomeration and direct ND spatial distribution. NDs were first air oxidized at 450 degrees C to obtain stable dispersions in dimethylacetamide (DMAc). By adding ISV into the dispersions, patchy hybrid micelles were formed due to H-bonds between NDs and ISV. The ISV-ND coassembly in DMAc was then used to fabricate nanocomposite films with a uniform sub-50 nm ND distribution, which has never been previously reported for an ND loading [Formula: see text] of more than 50 wt%. The films exhibit good transparency due to their well-defined nanostructures and smoothness and also exhibit an improved UV-absorption and hydrophilicity compared to neat ISV. More intriguingly, at a [Formula: see text] of 22 wt%, ISV and NDs coassemble into a network-like superstructure with well-aligned ND strings via a dialysis method. Transmission electron microscopy and dynamic light scattering measurements suggest a complex interplay between polymer-polymer, polymer-solvent, polymer-ND, ND-solvent, and ND-ND interactions during the formation of structures. Our work may provide an important foundation for the development of hierarchically ordered nanocomposites based on BCP-ND coassembly, which is beneficial for a wide spectrum of applications from biotechnology to quantum devices.
- Published
- 2021
- Full Text
- View/download PDF
50. Spiking Characteristics of Network-Mediated Responses Arising in Direction-Selective Ganglion Cells of Rabbit and Mouse Retinas to Electric Stimulation for Retinal Prostheses
- Author
-
Yanjinsuren Otgondemberel, Shelley I. Fried, Hyeonhee Roh, and Maesoon Im
- Subjects
Retinal Ganglion Cells ,Retinal degeneration ,Fano factor ,retinal prosthesis ,Biomedical Engineering ,Action Potentials ,Biology ,Direction selective ,Inhibitory postsynaptic potential ,Retina ,Article ,Mice ,chemistry.chemical_compound ,Internal Medicine ,medicine ,Animals ,Artificial vision ,electrical stimulation ,Electric stimulation ,direction-selective RGC ,retinal implant ,General Neuroscience ,Rehabilitation ,Retinal ,medicine.disease ,Electric Stimulation ,Visual Prosthesis ,Ganglion ,medicine.anatomical_structure ,chemistry ,Retinal ganglion cell ,Rabbits ,Neuroscience ,Photic Stimulation - Abstract
To restore the sight of individuals blinded by outer retinal degeneration, numerous retinal prostheses have been developed. However, the performance of those implants is still hampered by some factors including the lack of comprehensive understanding of the electrically-evoked responses arising in various retinal ganglion cell (RGC) types. In this study, we characterized the electrically-evoked network-mediated responses (hereafter referred to as electric responses) of ON-OFF direction-selective (DS) RGCs in rabbit and mouse retinas for the first time. Interestingly, both species in common demonstrated strong negative correlations between spike counts of electric responses and direction selective indices (DSIs), suggesting electric stimulation activates inhibitory presynaptic neurons that suppress null direction responses for high direction tuning in their light responses. The DS cells of the two species showed several differences including different numbers of bursts. Also, spiking patterns were more heterogeneous across DS RGCs of rabbits than those of mice. The electric response magnitudes of rabbit DS cells showed positive and negative correlations with ON and OFF light response magnitudes to preferred direction motion, respectively. But the mouse DS cells showed positive correlations in both comparisons. Our Fano Factor (FF) and spike time tiling coefficient (STTC) analyses revealed that spiking consistencies across repeats were reduced in late electric responses in both species. Moreover, the response consistencies of DS RGCs were lower than those of non-DS RGCs. Our results indicate the species-dependent retinal circuits may result in different electric response features and therefore suggest a proper animal model may be crucial in prosthetic researches.
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.