1. Profiles of upcoming HPC Applications and their Impact on Reservation Strategies
- Author
-
Gainaru, Ana, Goglin, Brice, Honoré, Valentin, Pallez, Guillaume, Vanderbilt University [Nashville], Topology-Aware System-Scale Data Management for High-Performance Computing (TADAAM), Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Inria & Labri, Université Bordeaux, and Plafrim
- Subjects
Execution time ,Stochastic application ,Plateformes de calcul ,Scheduling ,Checkpointing ,Point de sauvegarde ,Empreinte mémoire ,Coût stochastique ,Reservation sequence ,Ordonnancement ,Neuroscience application ,Reservation-based platform ,Memory footprint ,Applications de neurosciences ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,Stratégies de réservations - Abstract
With the expected convergence between HPC, BigData and AI, newapplications with different profiles are coming to HPC infrastructures.We aim at better understanding the features and needs of theseapplications in order to be able to run them efficiently on HPC platforms.The approach followed is bottom-up: we study thoroughly an emergingapplication, Spatially Localized Atlas Network (SLANT, originating from the neuroscience community) to understand its behavior.Based on these observations, we derive a generic, yet simple, application model (namely, a linear sequence of stochastic jobs). We expect this model to be representative for a large set of upcoming applicationsthat require the computational power of HPC clusters without fitting the typical behavior oflarge-scale traditional applications.In a second step, we show how one can manipulate this generic model in a scheduling framework. Specifically we consider the problem of making reservations (both time andmemory) for an execution on an HPC platform.We derive solutions using the model of the first step of this work.We experimentally show the robustness of the model, even with very few data or with another application, to generate themodel, and provide performance gains; La convergence entre les domaines du calcul haute-performance, du BigData et de l'intelligence artificiellefait émerger de nouveaux profils d'application sur les infrastructures HPC.Dans ce travail, nous proposons une étude de ces nouvelles applications afin de mieux comprendre leurs caractériques et besoinsdans le but d'optimiser leur exécution sur des plateformes HPC.Pour ce faire, nous adoptons une démarche ascendante. Premièrement, nous étudions en détail une application émergente, SLANT, provenant du domaine des neurosciences. Par un profilage détaillé de l'application, nous exposons ses principales caractéristiques ainsi que ses besoins en terme de ressources de calcul.A partir de ces observations, nous proposons un modèle d'application générique, pour le moment simple, composé d'une séquence linéaire de tâches stochastiques. Ce modèle devrait, selon nous, être adapté à une grande variété de ces applications émergentes qui requièrent la puissance de calcul des clusters HPC sans présenter le comportement typique des applications qui s'exécutent sur des machines à grande-échelle.Deuxièmement, nous montrons comment utiliser le modèle d'application générique dans le cadre du développement de stratégies d'ordonnancement. Plus précisément, nous nous intéressons à la conception de stratégies de réservations (à la fois en terme de temps de calcul et de mémoire).Nous proposons de telles solutions utilisant le modèle d'application générique exprimé dans la première étape de ce travail.Enfin, nous montrons la robustesse du modèle d'application et de nos stratégies d'ordonnancement au travers d'évaluations expérimentales de nos stratégies.Notamment, nous démontrons que nos solutions surpassent les approches standards de la communauté des neurosciences, même en cas de donnéespartielles ou d'extension à d'autres applications que SLANT.
- Published
- 2020