Al-Hunaiti, Afnan, Ghazzy, Asma, Sweidan, Nuha, Mohaidat, Qassem, Bsoul, Ibrahim, Mahmood, Sami, Hussein, Tareq, Air quality research group, and Institute for Atmospheric and Earth System Research (INAR)
Here, we report on a phyto-mediated bimetallic (NiFe2O4) preparation using a Boswellia carterii extract, which was characterized by XRD, FT-IR, TGA, electron microscopy, magnetic spectroscopy, and Mössbauer spectroscopy measurements. The prepared nano-catalysts were tested for oxidation of lignin monomer molecules—vanillyl alcohol and cinnamyl alcohol. In comparison with previously reported methods, the nano NiFe2O4 catalysts showed high photocatalytic activity and selectivity, under visible light irradiation with a nitroxy radical initiator (2,2,6,6-tetramethylpiperidinyloxy or 2,2,6,6-tetramethylpiperidine 1-oxyl; TEMPO) at room temperature and aerobic conditions. The multifold advantages of the catalyst both in terms of reduced catalyst loading and ambient temperature conditions were manifested by higher conversion of the starting material. Here, we report on a phyto-mediated bimetallic (NiFe2O4) preparation using a Boswellia carterii extract, which was characterized by XRD, FT-IR, TGA, electron microscopy, magnetic spectroscopy, and Mossbauer spectroscopy measurements. The prepared nano-catalysts were tested for oxidation of lignin monomer molecules-vanillyl alcohol and cinnamyl alcohol. In comparison with previously reported methods, the nano NiFe2O4 catalysts showed high photocatalytic activity and selectivity, under visible light irradiation with a nitroxy radical initiator (2,2,6,6-tetramethylpiperidinyloxy or 2,2,6,6-tetramethylpiperidine 1-oxyl; TEMPO) at room temperature and aerobic conditions. The multifold advantages of the catalyst both in terms of reduced catalyst loading and ambient temperature conditions were manifested by higher conversion of the starting material.