ABSTRACT In this article, we present a simple, fast, and accurate CAD oriented cavity model to predict accurately the resonant frequency, input impedance, bandwidth, efficiency, and gain of an equilateral triangular patch antenna with and without air gap in between substrate and ground plane. The present model shows very close agreement with the previously reported experiments for a wide range of antenna parameters and feed locations compared to the other models. The experimental values of input impedance, bandwidth, efficiency, and gain with air gap are not available in open literature. So, we have performed a set of experiments to validate the present model with air gap. The present model without air gap for different substrate parameters are also validated with our own experiments. The accuracy of the present model is calculated with respect to the HFSS computation and experimental results. This model will be very useful for designing the MIC on semiconductor materials with εr > 10 and directly applied in portable wireless equipments. © 2013 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:2271-2277, 2013 [ABSTRACT FROM AUTHOR]