1. Analysis of Russian software supporting onboard systems development lifecycle in context of import substitution policy
- Subjects
Computer science ,business.industry ,Software development ,Information technology ,ComputerApplications_COMPUTERSINOTHERSYSTEMS ,Product data management ,Certification ,Engineering management ,Software ,Product lifecycle ,DO-178C ,General Earth and Planetary Sciences ,Software analysis pattern ,business ,General Environmental Science - Abstract
Avionic industry in Russian Federation faces difficulties in organizing the reliable instrumental support of development processes. State-wide active direction on digitalization of the economy doesn’t facilitate the issue solving. The choice of software tools is an important component of success while developing complex certifiable software such as aircraft onboard systems. The same situation could be observed in other industries as well. Nowadays the Russian IT-market provides a sufficient amount of different software that can cover the development lifecycle processes of complex certifiable software for avionics in a varying degree. This article analyses the current situation on Russian software market and the impact of import substitution policy of Russian Federation on software developers and consumers – industrial enterprises. Details of regulation document DO-178C for onboard software development are considered to show the importance of correct choice of project’s instrumental landscape. Certain types of specialized software tools for development processes automating are considered. Authors identified the basic groups of tool functionality that provide support for the development lifecycle of onboard software. The Russian and foreign PLM (Product Lifecycle Management) and PDM (Product Data Management) systems and other software were examined for compliance with the necessary functionality. For comparative analysis the method based on additive verification of software by criteria was proposed. Research results allowed authors to make a conclusion about current Russian software level in comparison with worldwide analogues. Also some prospects of Russian software further evolution have received justification based on results of this research. Recommendations for the directions of software development and completion are given. The analysis, presented in the article, can be useful for avionic and other industries enterprises which need to choose some software for support the development lifecycle processes in new and ongoing projects of complex systems development. Also specialists who are interested in the current state of Russian IT industry can find some valuable information in this article.
- Published
- 2020