1. β-Cyclodextrin/carbon dots-grafted cellulose nanofibrils hydrogel for enhanced adsorption and fluorescence detection of levofloxacin.
- Author
-
Zhang Y, Qi X, Zhang X, Huang Y, Ma Q, Guo X, and Wu Y
- Subjects
- Adsorption, Anti-Bacterial Agents analysis, Anti-Bacterial Agents chemistry, Limit of Detection, Water Pollutants, Chemical analysis, Fluorescent Dyes chemistry, Quantum Dots chemistry, Fluorescence, Levofloxacin analysis, Levofloxacin chemistry, beta-Cyclodextrins chemistry, Cellulose chemistry, Nanofibers chemistry, Carbon chemistry, Hydrogels chemistry
- Abstract
In this study, a novel hydrogel, β-cyclodextrin/carbon dots-grafted cellulose nanofibrils hydrogel (βCCH), was fabricated for removal and fluorescence determination of levofloxacin (LEV). A comprehensive analysis was performed to characterize its physicochemical properties. Batch adsorption experiments were conducted, revealing that βCCH reached a maximum adsorption capacity of 1376.9 mg/g, consistent with both Langmuir and pseudo-second-order models, suggesting that the adsorption process of LEV on βCCH was primarily driven by chemical adsorption. The removal efficiency of βCCH was 99.2 % under the fixed conditions (pH: 6, initial concentration: 20 mg/L, contact time: 300 min, temperature: 25 °C). The removal efficiency of βCCH for LEV still achieved 97.3 % after five adsorption-desorption cycles. By using βCCH as a fluorescent probe for LEV, a fast and sensitive method was established with linear ranges of 1-120 mg/L and 0.2-1.0 μg/L and a limit of detection (LOD) as low as 0.09 μg/L. The viability of βCCH was estimated based on the economic analysis of the synthesis process and the removal of LEV, demonstrating that βCCH was more cost-effective than commercial activated carbon. This study provides a novel approach for preparing a promising antibiotic detection and adsorption material with the advantages of stability, and cost-effectiveness., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF