1. YAP1 maintains active chromatin state in head and neck squamous cell carcinomas that promotes tumorigenesis through cooperation with BRD4.
- Author
-
Chen N, Golczer G, Ghose S, Lin B, Langenbucher A, Webb J, Bhanot H, Abt NB, Lin D, Varvares M, Sattler M, Egloff AM, Joh R, Uppaluri R, Emerick KS, Lawrence MS, and Saladi SV
- Subjects
- Carcinogenesis genetics, Carcinogenesis metabolism, Cell Line, Tumor, Chromatin, Humans, Proteomics, Squamous Cell Carcinoma of Head and Neck, Cell Cycle Proteins genetics, Cell Cycle Proteins metabolism, Head and Neck Neoplasms genetics, Nuclear Proteins genetics, Transcription Factors genetics, Transcription Factors metabolism, YAP-Signaling Proteins genetics, YAP-Signaling Proteins metabolism
- Abstract
Analysis of The Cancer Genome Atlas and other published data of head and neck squamous cell carcinoma (HNSCC) reveals somatic alterations of the Hippo-YAP pathway in approximately 50% of HNSCC. Better strategies to target the YAP1 transcriptional complex are sought. Here, we show that FAT1, an upstream inhibitor of YAP1, is mutated either by missense or by truncating mutation in 29% of HNSCC. Comprehensive proteomic and drug-screening studies across pan-cancer models confirm that FAT1-mutant HNSCC exhibits selective and higher sensitivity to BRD4 inhibition by JQ1. Epigenomic analysis reveals an active chromatin state in FAT1-mutant HNSCC cells that is driven by the YAP/TAZ transcriptional complex through recruitment of BRD4 to deposit active histone marks, thereby maintaining an oncogenic transcriptional state. This study reveals a detailed cooperative mechanism between YAP1 and BRD4 in HNSCC and suggests a specific therapeutic opportunity for the treatment of this subset of head and neck cancer patients., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF