1. Chaperone-Mediated Autophagy Promotes Beclin1 Degradation in Persistently Infected Hepatitis C Virus Cell Culture
- Author
-
Rajesh Panigrahi, Antoinette Bell, Donkita Danielle Williams, Krzysztof Reiss, Yucel Aydin, Zahra Heidari, Srinivas Chava, Christopher M. Stephens, Kylar Wiltz, Wallace Wilson, and Srikanta Dash
- Subjects
0301 basic medicine ,Cell Survival ,NF-E2-Related Factor 2 ,Cell ,Hepacivirus ,Virus Replication ,Article ,Pathology and Forensic Medicine ,03 medical and health sciences ,Chaperone-mediated autophagy ,Stress, Physiological ,Autophagy ,medicine ,Humans ,Gene silencing ,Gene Silencing ,Protein kinase A ,Cells, Cultured ,Chemistry ,Kinase ,Endoplasmic reticulum ,Lysosome-Associated Membrane Glycoproteins ,Hepatitis C, Chronic ,Neoplasm Proteins ,Cell biology ,030104 developmental biology ,medicine.anatomical_structure ,Cell culture ,Hepatocytes ,Beclin-1 ,Molecular Chaperones ,Signal Transduction - Abstract
Liver cirrhosis is an independent risk factor for hepatocellular carcinoma (HCC). The mechanisms that contribute to HCC development in the cirrhotic microenvironment are unknown. We found that HCC grown in the highly stressed cirrhotic microenvironment undergoes autophagy switching from a protective state characterized by high macroautophagy with low chaperone-mediated autophagy (CMA) to an HCC-promoting state characterized by low macroautophagy with high CMA. This study examined how the stress response executes oncogenic cell programming through autophagy switching using hepatitis C virus cell culture. Protein kinase R–like endoplasmic reticulum kinase expression increased to high levels in hepatitis C virus culture. Protein kinase R–like endoplasmic reticulum kinase–dependent activation of nuclear factor erythroid 2–related factor (Nrf2) led to increased transcription of the cytoprotective genes: heat shock cognate 70 kDa protein and lysosome-associated membrane protein 2A (LAMP2A) and precipitated the induction of CMA. CMA selectively targeted beclin1 degradation, leading to accumulation of the autophagy flux protein p62 due to impaired autophagosome-endosome fusion. This impaired autophagosome-endosome fusion due to beclin1 degradation inhibited endocytosis and degradation of epidermal growth factor receptor. Silencing Nrf2 and LAMP2A reduced cell viability, suggesting that the stress response activates CMA as a compensatory mechanism of cell survival. We report a novel mechanism through which stress response triggers oncogenic Nrf2 signaling that promotes autophagy switching to favor cell survival.
- Published
- 2018
- Full Text
- View/download PDF