1. Apolipoprotein A-I proteolysis in aortic valve stenosis: role of cathepsin S.
- Author
-
Gebhard C, Maafi F, Stähli BE, Dang J, Nachar W, de Oliveira Moraes AB, Kernaleguen AE, Lavoie V, Mecteau M, Mihalache-Avram T, Shi Y, Chabot-Blanchet M, Busseuil D, Rhainds D, Rhéaume E, and Tardif JC
- Subjects
- Adult, Aged, Animals, Aortic Valve diagnostic imaging, Aortic Valve pathology, Aortic Valve Stenosis blood, Aortic Valve Stenosis diagnostic imaging, Aortic Valve Stenosis pathology, Disease Models, Animal, Female, Humans, Male, Metalloproteases blood, Middle Aged, Proteolysis, Rabbits, Risk Factors, Severity of Illness Index, Sex Factors, Species Specificity, Aortic Valve Stenosis enzymology, Apolipoprotein A-I blood, Cathepsins blood
- Abstract
Aortic valve stenosis (AVS) is the most common valvular heart disease in the Western world. Therapy based on apolipoprotein A-I (apoA-I), the major protein component of high-density lipoproteins, results in AVS regression in experimental models. Nevertheless, apoA-I degradation by proteases might lead to suboptimal efficacy of such therapy. An activatable probe using a quenched fluorescently labeled full-length apoA-I protein was generated to assess apoA-I-degrading protease activity in plasma derived from 44 men and 20 women with severe AVS (age 65.0 ± 10.4 years) as well as from a rabbit model of AVS. In human and rabbit AVS plasma, apoA-I-degrading protease activity was significantly higher than in controls (humans: 0.038 ± 0.009 vs 0.022 ± 0.005 RFU/s, p < 0.0001; rabbits: 0.033 ± 0.016 vs 0.017 ± 0.005 RFU/s, p = 0.041). Through the use of protease inhibitors, we identified metalloproteinases (MMP) as exerting the most potent proteolytic effect on apoA-I in AVS rabbits (67%, p < 0.05 vs control), while the cysteine protease cathepsin S accounted for 54.2% of apoA-I degradation in human plasma (p < 0.05 vs control) with the maximum effect seen in women (68.8%, p < 0.05 vs men). Accordingly, cathepsin S activity correlated significantly with mean transaortic pressure gradient in women (r = 0.5, p = 0.04) but not in men (r = - 0.09, p = 0.60), and was a significant independent predictor of disease severity in women (standardized beta coefficient 0.832, p < 0.001) when tested in a linear regression analysis. ApoA-I proteolysis is increased in AVS. Targeting circulating cathepsin S may lead to new therapies for human aortic valve disease.
- Published
- 2018
- Full Text
- View/download PDF