1. Functional and evolutionary anatomy of the African suckermouth catfishes (Siluriformes: Mochokidae): convergent evolution in Afrotropical and Neotropical faunas
- Author
-
Tom Geerinckx and Barbara De Kegel
- Subjects
Histology ,Movement ,Loricariidae ,Convergent evolution ,Sucker ,Animals ,Muscle, Skeletal ,Molecular Biology ,Catfishes ,Ecology, Evolution, Behavior and Systematics ,Ecological niche ,Mouth ,Suckermouth ,biology ,Mochokidae ,Skull ,Feeding Behavior ,Original Articles ,Cell Biology ,Anatomy ,biology.organism_classification ,Biological Evolution ,Biomechanical Phenomena ,Taxon ,Head ,Developmental Biology ,Catfish - Abstract
Of those fishes scraping food off substrates and using head parts in substrate attachment for station-holding, the catfish families Loricariidae, Astroblepidae and Mochokidae display the most dramatically adapted morphologies. Loricariidae and Astroblepidae, living in the Neotropical freshwaters, exclusively contain suckermouth catfish species, and their anatomy and head kinematics have already been studied into detail. Among Mochokidae, living in the tropical freshwaters of Africa, only the chiloglanidine subfamily has a sucker mouth, and occupies similar niches in Africa as both Neotropical families do in South America. Having derived from relatively unrelated catfish ancestors, their anatomy is poorly known, and the nature of their scraping and station-holding capabilities is not known at all. This paper provides details on the chiloglanidine head anatomy and function (relating their anatomy to that of the non-suckermouth Mochokidae), and compares this Afrotropical suckermouth taxon with both Neotropical suckermouth families. It identifies both convergences and differing anatomical and kinematic solutions to the same key needs of food-scraping and station-holding suckermouth fishes. Chiloglanidine mochokids differ from both Neotropical families in having less mobile jaws, with an upper jaw assisting more in station-holding than in feeding. They share the highly mobile lower lip with both Neotropical taxa, although the configuration of the intermandibular/protractor hyoidei muscle system, changing the volume of the sucker-disc cavity, differs in all three taxa. Chiloglanidines have a single, posterior inflow opening into this cavity, whereas Loricariidae have two lateral openings, and Astroblepidae have none, using an opercular incurrent opening instead. The chiloglanidine buccal valve system consists of two passive valves, as in Astroblepidae. Although less diverse in number of genera and species, this Afrotropical suckermouth taxon possesses the anatomical and kinematic key elements allowing a successful occupation of a niche similar to the one found in the Loricariidae + Astroblepidae clade.
- Published
- 2014