1. Heteroleptic Ligation by an endo‐Functionalized Cage
- Author
-
M. Sc. Sarah C. Bete and Matthias Otte
- Subjects
Crystal structure ,010402 general chemistry ,01 natural sciences ,Catalysis ,endo-functionalization ,iron oxygenases ,organic cages ,chemistry.chemical_compound ,Transition metal ,Dynamic combinatorial chemistry ,Imidazole ,Carboxylate ,dynamic combinatorial chemistry ,facial triads ,010405 organic chemistry ,Chemistry ,Ligand ,Communication ,Cage Compounds ,General Chemistry ,Combinatorial chemistry ,Communications ,0104 chemical sciences ,3. Good health ,Covalent bond ,Amine gas treating - Abstract
A conceptual approach for the synthesis of quasi‐heteroleptic complexes with properly endo‐functionalized cages as ligands is presented. The cage ligand reported here is of a covalent organic nature, it has been synthesized via a dynamic combinatorial chemistry approach, making use of a masked amine. Inspired by enzymatic active sites, the described system bears one carboxylate and two imidazole moieties as independent ligating units through which it is able to coordinate to transition metals. Analysis of the iron(II) complex in solution and the solid state validates the structure and shows that no undesired but commonly observed dimerization process takes place. The solid‐state structure shows a five‐coordinate metal center with the carboxylate bidentately bound to iron, which makes Fe@2 an unprecedentedly detailed structural model complex for this kind of non‐heme iron oxygenases. As, as confirmed by the crystal structure, sufficient space for other organic ligands is available, the biologically relevant ligand α‐ketoglutarate is implemented. We observe biomimetic reaction behavior towards dioxygen that opens studies investigating Fe@2 as a functional model complex., A cage compound is synthesized that is endo‐functionalized with one carboxylic acid and two imidazole moieties. These groups can cooperate with each other to coordinate to Zn(II) and Fe(II) resulting in biomimetic quasi‐heteroleptic transition‐metal‐cage complexes. Coordination of α‐ketoglutarate to the iron complex leads to an increase of its reactivity towards dioxygen.
- Published
- 2021