1. Modeling of a microreactor for propylene production by the catalytic dehydrogenation of propane
- Author
-
Juan S. Riaño Z and Hugo R. Zea R
- Subjects
Finite volume method ,Materials science ,Plane (geometry) ,General Chemical Engineering ,Inorganic chemistry ,Thermodynamics ,Reynolds number ,Computer Science Applications ,Catalysis ,chemistry.chemical_compound ,symbols.namesake ,chemistry ,Propane ,symbols ,Dehydrogenation ,Cylindrical coordinate system ,Microreactor - Abstract
A model of a microreactor was proposed to analyze the production of propylene by the propane dehydrogenation using a catalytic surface of V2O5/TiO2 doped with Rb. The reactor is a 50 mm length tube of 2 mm diameter whose wall is a catalytic surface, modeled using finite volume method in cylindrical coordinates over a tangential plane. Dehydrogenation kinetics is reported by Grabowski (2004) . First, a mesh independence analysis was done to assure the adequate cell size. Second, a parametric analysis changing Reynolds number at different temperatures and propane-oxygen relations was done to find the Reynolds range to effectively use the reactor length (Re from 1 to 10). Then at the later Reynolds interval a parametric analysis involving temperature and composition was done to create productivity surfaces to find the highest productivity operation conditions. Finally, an analysis varying pressure at the maximum productivity conditions (Re = 1, T = 500 K, C3H8/O2 = 2) was developed.
- Published
- 2014