1. CT-based whole lung radiomics nomogram: a tool for identifying the risk of cardiovascular disease in patients with chronic obstructive pulmonary disease.
- Author
-
Lin, XiaoQing, Zhou, TaoHu, Ni, Jiong, Li, Jie, Guan, Yu, Jiang, Xin'ang, Zhou, Xiuxiu, Xia, Yi, Xu, Fangyi, Hu, Hongjie, Dong, Qian, Liu, Shiyuan, and Fan, Li
- Subjects
CHRONIC obstructive pulmonary disease ,RADIOMICS ,CARDIOVASCULAR diseases ,CARDIOVASCULAR diseases risk factors ,NOMOGRAPHY (Mathematics) ,LUNGS - Abstract
Objectives: To evaluate the value of CT-based whole lung radiomics nomogram for identifying the risk of cardiovascular disease (CVD) in patients with chronic obstructive pulmonary disease (COPD). Materials and methods: A total of 974 patients with COPD were divided into a training cohort (n = 402), an internal validation cohort (n = 172), and an external validation cohort (n = 400) from three hospitals. Clinical data and CT findings were analyzed. Radiomics features of whole lung were extracted from the non-contrast chest CT images. A radiomics signature was constructed with algorithms. Combined with the radiomics score and independent clinical factors, multivariate logistic regression analysis was used to establish a radiomics nomogram. ROC curve was used to analyze the prediction performance of the model. Results: Age, weight, and GOLD were the independent clinical factors. A total of 1218 features were extracted and reduced to 15 features to build the radiomics signature. In the training cohort, the combined model (area under the curve [AUC], 0.731) showed better discrimination capability (p < 0.001) than the clinical factors model (AUC, 0.605). In the internal validation cohort, the combined model (AUC, 0.727) performed better (p = 0.032) than the clinical factors model (AUC, 0.629). In the external validation cohort, the combined model (AUC, 0.725) performed better (p < 0.001) than the clinical factors model (AUC, 0.690). Decision curve analysis demonstrated the radiomics nomogram outperformed the clinical factors model. Conclusion: The CT-based whole lung radiomics nomogram has the potential to identify the risk of CVD in patients with COPD. Clinical relevance statement: This study helps to identify cardiovascular disease risk in patients with chronic obstructive pulmonary disease on chest CT scans. Key Points: • To investigate the value of CT-based whole lung radiomics features in identifying the risk of cardiovascular disease in chronic obstructive pulmonary disease patients. • The radiomics nomogram showed better performance than the clinical factors model to identify the risk of cardiovascular disease in patients with chronic obstructive pulmonary disease. • The radiomics nomogram demonstrated excellent performance in the training, internal validation, and external validation cohort (AUC, 0.731; AUC, 0.727; AUC, 0.725). [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF