1. DDX5 deficiency drives non-canonical NF-κB activation and NRF2 expression, influencing sorafenib response and hepatocellular carcinoma progression.
- Author
-
Li Z, Kim W, Utturkar S, Yan B, Lanman NA, Elzey BD, Kazemian M, Yeo Y, and Andrisani O
- Subjects
- Animals, Humans, Mice, Gene Expression Regulation, Neoplastic drug effects, Cell Line, Tumor, Wnt Signaling Pathway drug effects, Ferroptosis drug effects, Ferroptosis genetics, Sorafenib pharmacology, Carcinoma, Hepatocellular drug therapy, Carcinoma, Hepatocellular genetics, Carcinoma, Hepatocellular pathology, Carcinoma, Hepatocellular metabolism, Liver Neoplasms genetics, Liver Neoplasms drug therapy, Liver Neoplasms pathology, Liver Neoplasms metabolism, DEAD-box RNA Helicases metabolism, DEAD-box RNA Helicases genetics, NF-E2-Related Factor 2 metabolism, NF-E2-Related Factor 2 genetics, Disease Progression, NF-kappa B metabolism
- Abstract
In advanced hepatocellular carcinoma (HCC), RNA helicase DDX5 regulates the Wnt/β-catenin-ferroptosis axis, influencing the efficacy of the multi-tyrosine kinase inhibitor (mTKI) sorafenib. DDX5 inhibits Wnt/β-catenin signaling, preventing sorafenib-induced ferroptosis escape. Sorafenib/mTKIs reduce DDX5 expression, correlating with poor patient survival post-sorafenib treatment. Notably, DDX5-knockout in HCC cells activates Wnt/β-catenin signaling persistently. Herein, we investigate the mechanistic impact of Wnt/β-catenin activation resulting from DDX5 downregulation in the progression and treatment of HCC. RNAseq analyses identified shared genes repressed by DDX5 and upregulated by sorafenib, including Wnt signaling genes, NF-κB-inducing kinase (NIK) essential for non-canonical NF-κB (p52/RelB) activation, and cytoprotective transcription factor NRF2. We demonstrate, Wnt/β-catenin activation induced NIK transcription, leading to non-canonical NF-κB activation, which subsequently mediated NRF2 transcription. Additionally, DDX5 deficiency extended NRF2 protein half-life by inactivating KEAP1 through p62/SQSTM1 stabilization. In a preclinical HCC mouse model, NRF2 knockdown or DDX5 overexpression restricted tumor growth upon sorafenib treatment, via induction of ferroptosis. Importantly, DDX5-knockout HCC cells exhibited elevated expression of Wnt signaling genes, NIK, p52/RelB, and NRF2-regulated genes, regardless of sorafenib treatment. Transcriptomic analyses of HCCs from TCGA and the Stelic Animal Model (STAM) of non-alcoholic steatohepatitis revealed elevated expression of these interconnected pathways in the context of DDX5 downregulation. In conclusion, DDX5 deficiency triggers Wnt/β-catenin signaling, promoting p52/RelB and NRF2 activation, thereby enabling ferroptosis evasion upon sorafenib treatment. Similarly, independent of sorafenib, DDX5 deficiency in liver tumors enhances activation and gene expression of these interconnected pathways, underscoring the clinical relevance of DDX5 deficiency in HCC progression and therapeutic response., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF