Mammalian target of rapamycin (mTOR) signaling pathway plays a fundamental role in cell proliferation, differentiation, growth and survival.[1] As a consequence, various tumors and central nervous system (CNS) disorders share aberrant activation of the mTOR pathway. Drugs targeting the mTOR pathway represent therefore a valuable path to address multiple therapeutic areas.[1-2] Here, we report the lead optimization of PQR620, a novel potent and selective brain penetrant inhibitor of mTORC1/2. The development of selective mTOR inhibitors is particularly challenging due to extensively conserved amino acid residues in the ATP binding pocket within the PI3K and PI3K-related protein kinase family. Here, we present a detailed ligand-based structure activity relationship study allowing selective targeting of mTOR kinase activity without the interference of other PI3K family members. Systematic variation of the hinge region and affinity binding motifs led to the identification of PQR620, a morpholino-triazinyl derivative, as potent and selective mTOR inhibitor. Substitution of the morpholine binding to the hinge region and introduction of a 2-aminopyridine, substituted with a difluoromethyl group, induced a >1000-fold selectivity towards mTOR over PI3Kα in enzymatic binding assays. In A2058 melanoma cells PQR620 demonstrated inhibition of protein kinase B (pSer473) and ribosomal protein S6 (pSer235/236) phosphorylation with IC50 values of 0.2 μM and 0.1 μM, respectively. The physico-chemical properties of PQR620 result in good oral bioavailability and excellent brain penetration. PQR620 showed excellent selectivity over a wide panel of kinases, as well as excellent selectivity versus unrelated receptor enzymes and ion channels. Moreover, PQR620 demonstrated its potency to prevent cancer cell growth in an NTRC 44 cancer cell line panel, resulting in a 10log(IC50) of 2.86 (nM). Further pharmacological properties and in vivo efficacy of PQR620 are presented in detail in Ref. [3]. The preparation of PQR620 was optimized towards a robust synthetic route involving only 4 steps, allowing for a rapid access to quantities required for pre-clinical testing. In conclusion, PQR620 inhibits mTOR potently and selectively, and shows anti-tumor effects in vitro and in vivo. PQR620 is currently in pre-clinical development. [1] M. Laplante, D. Sabatini, Cell 2012, 149, 274-293. [2] Z. Z. Chong, Y. C. Shang, L. Zhang, S. Wang, K. Maiese, Oxid. Med. Cell. Longev. 2010, 3, 374–391. [3] F. Beaufils, D. Rageot, A. Melone, A. M. Sele, M. Lang, J. Mestan, R. A. Ettlin, P. Hillmann, V. Cmiljanovic, C. Walter, E. Singer, H. P. Nguyen, P. Hebeisen, D. Fabbro, M. P. Wymann, “Pharmacological characterization of the selective, orally bioavailable, potent mTORC1/2 inhibitor PQR620” presented at AACR Annual Meeting 2016, April 16-20, New Orleans, Louisiana, USA. Citation Format: Florent Beaufils, Denise Rageot, Anna Melone, Marc Lang, Jürgen Mestan, Vladimir Cmiljanovic, Petra Hillmann, Paul Hebeisen, Doriano Fabbro, Matthias P. Wymann. Structure-activity relationship studies, synthesis, and biological evaluation of PQR620, a highly potent and selective mTORC1/2 inhibitor. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 1336.