1. Bone changes after short-term whole body vibration are confined to cancellous bone.
- Author
-
Runge WO, Ruppert DS, Marcellin-Little DJ, Dahners LE, Harrysson O, and Weinhold PS
- Subjects
- Animals, Female, Rats, Rats, Sprague-Dawley, Time Factors, Bone Density physiology, Cancellous Bone physiology, Femur physiology, Vibration therapeutic use
- Abstract
Objective: This study assessed femur properties in 80 adult female rats exposed to a range of whole body vibration amplitudes at 45 Hz over five weeks. Our hypothesis was that an optimal amplitude for whole body vibration would be apparent and would result in increased bone strength., Methods: Animals were treated in five amplitude groups (0 g, 0.15 g, 0.3 g, 0.6 g, and 1.2 g peak), for 15 minutes per day, five days per week, for five weeks. Femur strength was assessed via: (1) three-point bending of the shaft, (2) cantilever bending of the neck, and (3) indentation of distal cancellous bone. Femoral bone mineral density, plasma prostaglandin E2 (PGE
2 ) concentrations, cartilage thickness, and histopathologic properties were measured., Results: Vibration doubled (P=0.039) cancellous bone stiffness in the 0.6 g and 1.2 g groups and induced a 74% increase in PGE2 concentrations (P=0.007). However, femoral densitometry and strength of the neck and shaft were unchanged and the cancellous bone indentation strength did not differ statistically (P=0.084). Cartilage thickness of vibrated groups at the medial condyle did not increase significantly (P=0.142) and the histopathologic grade did not change. There was no definitive optimal vibration amplitude., Conclusion: The benefits of vibration therapy over five weeks were confined to cancellous bone.- Published
- 2018