Pierre Sicard, Xiaoping Liu, Haikel Dridi, Mohamad Yehia, Clément Menuet, Panagiota Apostolou, Leah Sittenfeld, Jérôme Thireau, Stefan Matecki, Alain Lacampagne, Andrew R. Marks, Steve Reiken, Qi Yuan, Julie Buron, Columbia University [New York], Physiologie & médecine expérimentale du Cœur et des Muscles [U 1046] (PhyMedExp), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), Institut de Neurobiologie de la Méditerranée [Aix-Marseille Université] (INMED - INSERM U1249), Institut National de la Santé et de la Recherche Médicale (INSERM)-Aix Marseille Université (AMU), Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University College of Physicians and Surgeons, New York, NY, Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM), Grants from the NIH to ARM (T32HL120826, R01HL145473, R01DK118240, R01HL142903, R01HL061503, R01HL140934, R01AR070194) and by the CHDI Foundation, and pellegrino, Christophe
Huntington’s disease (HD) is a progressive, autosomal dominant neurodegenerative disorder affecting striatal neurons beginning in young adults with loss of muscle coordination and cognitive decline. Less appreciated is the fact that patients with HD also exhibit cardiac and respiratory dysfunction, including pulmonary insufficiency and cardiac arrhythmias. The underlying mechanism for these symptoms is poorly understood. In the present study we provide insight into the cause of cardiorespiratory dysfunction in HD and identify a potentially novel therapeutic target. We now show that intracellular calcium (Ca2+) leak via posttranslationally modified ryanodine receptor/intracellular calcium release (RyR) channels plays an important role in HD pathology. RyR channels were oxidized, PKA phosphorylated, and leaky in brain, heart, and diaphragm both in patients with HD and in a murine model of HD (Q175). HD mice (Q175) with endoplasmic reticulum Ca2+ leak exhibited cognitive dysfunction, decreased parasympathetic tone associated with cardiac arrhythmias, and reduced diaphragmatic contractile function resulting in impaired respiratory function. Defects in cognitive, motor, and respiratory functions were ameliorated by treatment with a novel Rycal small-molecule drug (S107) that fixes leaky RyR. Thus, leaky RyRs likely play a role in neuronal, cardiac, and diaphragmatic pathophysiology in HD, and RyRs are a potential novel therapeutic target., This study explores the role of ryanodine receptor calcium channels in the brain, the heart, and the diaphragm and central versus peripheral pathophysiological mechanisms in Huntington’s disease.