1. Attention Recurrent Autoencoder Hybrid Model for Early Fault Diagnosis of Rotating Machinery
- Author
-
Zhiyong Hu, Xueyi Li, Cheng Shi, Xiangwei Kong, and Qingzhao Zhou
- Subjects
Computer science ,business.industry ,Deep learning ,020208 electrical & electronic engineering ,Feature extraction ,Pattern recognition ,02 engineering and technology ,Function (mathematics) ,Fault (power engineering) ,Signal ,Autoencoder ,Recurrent neural network ,0202 electrical engineering, electronic engineering, information engineering ,Artificial intelligence ,Electrical and Electronic Engineering ,business ,Instrumentation - Abstract
Early fault diagnosis of rotating machinery is crucial in the industry. The network parameters of the traditional deep learning-based fault diagnosis method are optimized only by the single loss function, and the extracted features are usually not the most valuable features of the input signal. This article proposes a novel method, attention recurrent autoencoder (AE) hybrid model classification algorithm, for early fault diagnosis and severity detection of rotating machinery. The AE can learn the most valuable features in an unsupervised way. By adjusting the weight proportion of the two loss functions and optimizing the multibranch network simultaneously, the proposed method enables the network to extract the most valuable features of the input signals. Moreover, the proposed method can take the raw 1-D vibration signal as the input and does not need time–frequency conversion. By introducing long short-term memory networks in AE, the time-dependent features of the data can be extracted effectively. The proposed method was verified by five kinds of gears at different pitting degrees under six load conditions. The results indicate that the method can provide simultaneous accurate fault diagnosis and severity detection for different pitting degrees.
- Published
- 2021