1. CLASSIFICATION OF STRAWBERRY FRUIT SHAPE BY MACHINE LEARNING
- Author
-
T. Ishikawa, A. Hayashi, S. Nagamatsu, Y. Kyutoku, I. Dan, T. Wada, K. Oku, Y. Saeki, T. Uto, T. Tanabata, S. Isobe, and N. Kochi
- Subjects
0106 biological sciences ,0301 basic medicine ,lcsh:Applied optics. Photonics ,Similarity (geometry) ,Ellipse ,Machine learning ,computer.software_genre ,01 natural sciences ,lcsh:Technology ,03 medical and health sciences ,Digital image ,Robustness (computer science) ,Mathematics ,Chain code ,business.industry ,lcsh:T ,Subtraction ,lcsh:TA1501-1820 ,Random forest ,030104 developmental biology ,lcsh:TA1-2040 ,Contour line ,Artificial intelligence ,business ,lcsh:Engineering (General). Civil engineering (General) ,computer ,010606 plant biology & botany - Abstract
Shape is one of the most important traits of agricultural products due to its relationships with the quality, quantity, and value of the products. For strawberries, the nine types of fruit shape were defined and classified by humans based on the sampler patterns of the nine types. In this study, we tested the classification of strawberry shapes by machine learning in order to increase the accuracy of the classification, and we introduce the concept of computerization into this field. Four types of descriptors were extracted from the digital images of strawberries: (1) the Measured Values (MVs) including the length of the contour line, the area, the fruit length and width, and the fruit width/length ratio; (2) the Ellipse Similarity Index (ESI); (3) Elliptic Fourier Descriptors (EFDs), and (4) Chain Code Subtraction (CCS). We used these descriptors for the classification test along with the random forest approach, and eight of the nine shape types were classified with combinations of MVs + CCS + EFDs. CCS is a descriptor that adds human knowledge to the chain codes, and it showed higher robustness in classification than the other descriptors. Our results suggest machine learning's high ability to classify fruit shapes accurately. We will attempt to increase the classification accuracy and apply the machine learning methods to other plant species.
- Published
- 2018