Prellier, Wilfrid, Lorenz, M, Ramachandra Rao, M, Venkatesan, T., Fortunato, E, Barquinha, P, Branquinho, R, Salgueiro, D, Martins, M., Carlos, E, Liu, A, Shan, F, Grundmann, M., Boschker, H, Mukherjee, M., Priyadarshini, M, Dasgupta, D., Rogers, R., Teherani, T, Sandana, E, Bove, P., Rietwyk, R, Zaban, A, Veziridis, A, Weidenkaff, A, Muralidhar, M, Murakami, M, Abel, A., Fompeyrine, F, Zuniga-Perez, P, Ramesh, R., Spaldin, A, Ostanin, S, Borisov, V, Mertig, M, Lazenka, V, Srinivasan, S., Prellier, P, Uchida, M, Kawasaki, M, Pentcheva, P, Gegenwart, P, Miletto Granozio, M, Fontcuberta, F, Pryds, P, European Cooperation in Science and Technology, Ministerio de Economía y Competitividad (España), Generalitat de Catalunya, Ministero dell'Istruzione, dell'Università e della Ricerca, Laboratoire de cristallographie et sciences des matériaux (CRISMAT), École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC), National University of Singapore (NUS), University of Madeira, Institut für Experimentelle Physik II, Universität Leipzig [Leipzig], Helmholtz zentrum für Schwerionenforschung GmbH (GSI), Institut Charles Sadron (ICS), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), G.H. Sergievsky Center, Columbia University, New York, NY, USA, Columbia University Irving Medical Center (CUIMC), Picogiga International, Epidémiologie des cancers, Institut National de la Santé et de la Recherche Médicale (INSERM), Planetary and Geosciences Division [Ahmedabad], Physical Research Laboratory [Ahmedabad] (PRL), Indian Space Research Organisation (ISRO)-Indian Space Research Organisation (ISRO), inconnu, Inconnu, Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Universität Leipzig, Indian Institute of Technology Madras (IIT Madras), CENIMAT/I3N, Departemento de Ciencia dos Materiais, Universidade Nova de Lisboa = NOVA University Lisbon (NOVA)-Universidade Nova de Lisboa = NOVA University Lisbon (NOVA)-Faculdade de Ciências e Tecnologia = School of Science & Technology (FCT NOVA), Universidade Nova de Lisboa = NOVA University Lisbon (NOVA), Qingdao University (QDU), Max Planck Institute for Solid State Research, Max-Planck-Gesellschaft, Nanovation SARL, Bar-Ilan University [Israël], University of Stuttgart, Shibaura Institute of Technology, IBM Germany Research & Development GmbH (IBM), Centre de recherche sur l'hétéroepitaxie et ses applications (CRHEA), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), University of California [Berkeley] (UC Berkeley), University of California (UC), Department of Materials [ETH Zürich] (D-MATL), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Martin-Luther-University Halle-Wittenberg, Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Oakland University, The University of Tokyo (UTokyo), Universität Duisburg-Essen = University of Duisburg-Essen [Essen], University of Augsburg (UNIA), CNR-SPIN and Department of Physics 'E. Pancini, Université de Naples, Institut de Ciència de Materials de Barcelona (ICMAB), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), and Danmarks Tekniske Universitet = Technical University of Denmark (DTU)
Lorenz, M. et al., Oxide electronic materials provide a plethora of possible applications and offer ample opportunity for scientists to probe into some of the exciting and intriguing phenomena exhibited by oxide systems and oxide interfaces. In addition to the already diverse spectrum of properties, the nanoscale form of oxides provides a new dimension of hitherto unknown phenomena due to the increased surface-to-volume ratio. Oxide electronic materials are becoming increasingly important in a wide range of applications including transparent electronics, optoelectronics, magnetoelectronics, photonics, spintronics, thermoelectrics, piezoelectrics, power harvesting, hydrogen storage and environmental waste management. Synthesis and fabrication of these materials, as well as processing into particular device structures to suit a specific application is still a challenge. Further, characterization of these materials to understand the tunability of their properties and the novel properties that evolve due to their nanostructured nature is another facet of the challenge. The research related to the oxide electronic field is at an impressionable stage, and this has motivated us to contribute with a roadmap on ‘oxide electronic materials and oxide interfaces’. This roadmap envisages the potential applications of oxide materials in cutting edge technologies and focuses on the necessary advances required to implement these materials, including both conventional and novel techniques for the synthesis, characterization, processing and fabrication of nanostructured oxides and oxide-based devices. The contents of this roadmap will highlight the functional and correlated properties of oxides in bulk, nano, thin film, multilayer and heterostructure forms, as well as the theoretical considerations behind both present and future applications in many technologically important areas as pointed out by Venkatesan. The contributions in this roadmap span several thematic groups which are represented by the following authors: novel field effect transistors and bipolar devices by Fortunato, Grundmann, Boschker, Rao, and Rogers; energy conversion and saving by Zaban, Weidenkaff, and Murakami; new opportunities of photonics by Fompeyrine, and Zuniga-Perez; multiferroic materials including novel phenomena by Ramesh, Spaldin, Mertig, Lorenz, Srinivasan, and Prellier; and concepts for topological oxide electronics by Kawasaki, Pentcheva, and Gegenwart. Finally, Miletto Granozio presents the European action ‘towards oxide-based electronics’ which develops an oxide electronics roadmap with emphasis on future nonvolatile memories and the required technologies. In summary, we do hope that this oxide roadmap appears as an interesting up-to-date snapshot on one of the most exciting and active areas of solid state physics, materials science, and chemistry, which even after many years of very successful development shows in short intervals novel insights and achievements., This work has been partially supported by the TO-BE COST action MP1308. J F acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the ‘Severo Ochoa’ Programme for Centres of Excellence in R&D (SEV-2015-0496) and MAT2014-56063-C2-1R, and from the Catalan Government (2014 SGR 734). F.M.G. acknowledges support from MIUR through the PRIN 2010 Project ‘OXIDE’.